BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32183039)

  • 1. Tuning the Polymorphism of the Anti-VEGF G-rich V7t1 Aptamer by Covalent Dimeric Constructs.
    Riccardi C; Musumeci D; Platella C; Gaglione R; Arciello A; Montesarchio D
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the G-rich VEGF-binding aptamer V7t1: when two G-quadruplexes are better than one!
    Moccia F; Riccardi C; Musumeci D; Leone S; Oliva R; Petraccone L; Montesarchio D
    Nucleic Acids Res; 2019 Sep; 47(15):8318-8331. PubMed ID: 31276595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective light-up of dimeric G-quadruplex forming aptamers for efficient VEGF
    Napolitano E; Riccardi C; Gaglione R; Arciello A; Pirota V; Triveri A; Doria F; Musumeci D; Montesarchio D
    Int J Biol Macromol; 2023 Jan; 224():344-357. PubMed ID: 36270405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Ensemble Docking Approach for Analyzing and Designing Aptamer Heterodimers Targeting VEGF
    Go YJ; Kalathingal M; Rhee YM
    Int J Mol Sci; 2024 Apr; 25(7):. PubMed ID: 38612876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition.
    Riccardi C; Napolitano E; Musumeci D; Montesarchio D
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33182593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring New Potential Anticancer Activities of the G-Quadruplexes Formed by [(GTG
    Virgilio A; Benigno D; Pecoraro A; Russo A; Russo G; Esposito V; Galeone A
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34208896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LNA-induced dynamic stability in a therapeutic aptamer: insights from molecular dynamics simulations.
    Pal R; Deb I; Sarzynska J; Lahiri A
    J Biomol Struct Dyn; 2023 Apr; 41(6):2221-2230. PubMed ID: 35100936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-targeted effects of G4-aptamers and their antiproliferative activity against cancer cells.
    Ogloblina AM; Khristich AN; Karpechenko NY; Semina SE; Belitsky GA; Dolinnaya NG; Yakubovskaya MG
    Biochimie; 2018 Feb; 145():163-173. PubMed ID: 29208488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directing in Vitro Selection towards G-quadruplex-forming Aptamers to Inhibit HMGB1 Pathological Activity.
    Napolitano E; Criscuolo A; Riccardi C; Esposito CL; Catuogno S; Coppola G; Roviello GN; Montesarchio D; Musumeci D
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202319828. PubMed ID: 38358301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications.
    Kimoto M; Nakamura M; Hirao I
    Nucleic Acids Res; 2016 Sep; 44(15):7487-94. PubMed ID: 27387284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of protein capture from a human cancer cell line by genomic G-quadruplex DNA sequences toward aptamer discovery.
    Morrissey KL; DeWitt D; Shah N; Fall W; Shah H; McGown LB
    Anal Bioanal Chem; 2021 Jun; 413(14):3775-3788. PubMed ID: 33884462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backbone modified TBA analogues endowed with antiproliferative activity.
    Esposito V; Russo A; Amato T; Varra M; Vellecco V; Bucci M; Russo G; Virgilio A; Galeone A
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt B):1213-1221. PubMed ID: 27663232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aptamer selection based on G4-forming promoter region.
    Yoshida W; Saito T; Yokoyama T; Ferri S; Ikebukuro K
    PLoS One; 2013; 8(6):e65497. PubMed ID: 23750264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening and improvement of an anti-VEGF DNA aptamer.
    Nonaka Y; Sode K; Ikebukuro K
    Molecules; 2010 Jan; 15(1):215-25. PubMed ID: 20110884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G4 Aptamers: Trends in Structural Design.
    Varizhuk A; Ilyinsky N; Smirnov I; Pozmogova G
    Mini Rev Med Chem; 2016; 16(16):1321-1329. PubMed ID: 26996618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific loop modifications of the thrombin-binding aptamer trigger the formation of parallel structures.
    Aviñó A; Portella G; Ferreira R; Gargallo R; Mazzini S; Gabelica V; Orozco M; Eritja R
    FEBS J; 2014 Feb; 281(4):1085-99. PubMed ID: 24304855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thrombin binding aptamer analogues containing inversion of polarity sites endowed with antiproliferative and anti-motility properties against Calu-6 cells.
    Esposito V; Russo A; Vellecco V; Bucci M; Russo G; Mayol L; Virgilio A; Galeone A
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2645-2650. PubMed ID: 30071274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Biological Features of G-Quadruplex Aptamers as Promising Inhibitors of the STAT3 Signaling Pathway.
    Esposito V; Benigno D; Bello I; Panza E; Bucci M; Virgilio A; Galeone A
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel monomolecular derivatives of the anti-HIV-1 G-quadruplex-forming Hotoda's aptamer containing inversion of polarity sites.
    Virgilio A; Esposito V; Tassinari M; Nadai M; Richter SN; Galeone A
    Eur J Med Chem; 2020 Dec; 208():112786. PubMed ID: 32911256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the conformational behaviour and aggregation properties of lipid-conjugated AS1411 aptamers.
    Riccardi C; Musumeci D; Russo Krauss I; Piccolo M; Irace C; Paduano L; Montesarchio D
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1384-1399. PubMed ID: 30170359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.