These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32183126)

  • 1. Tensile Properties of <111>-Oriented Nanotwinned Cu with Different Columnar Grain Structures.
    Li YJ; Tu KN; Chen C
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Cu Ion Concentration on Microstructures and Mechanical Properties of Nanotwinned Cu Foils Fabricated by Rotary Electroplating.
    Hung YW; Tran DP; Chen C
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tensile Properties and Thermal Stability of Unidirectionally <111>-Oriented Nanotwinned and <110>-Oriented Microtwinned Copper.
    Li YJ; Tu KN; Chen C
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress Relaxation and Grain Growth Behaviors of (111)-Preferred Nanotwinned Copper during Annealing.
    Lai JY; Tran DP; Yang SC; Tseng IH; Shie KC; Leu J; Chen C
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of grain orientations of Cu seed layers on the growth of <111>-oriented nanotwinned Cu.
    Liu CM; Lin HW; Lu CL; Chen C
    Sci Rep; 2014 Aug; 4():6123. PubMed ID: 25134840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hetero interface and twin boundary mediated strengthening in nano-twinned Cu//Ag multilayered materials.
    Zheng Y; Li Q; Zhang J; Ye H; Zhang H; Shen L
    Nanotechnology; 2017 Oct; 28(41):415705. PubMed ID: 28782728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data compilation regarding the effects of grain size and temperature on the strength of the single-phase FCC CrFeNi medium-entropy alloy.
    Schneider M; Laplanche G
    Data Brief; 2021 Feb; 34():106712. PubMed ID: 33490332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significant Hall-Petch effect in micro-nanocrystalline electroplated copper controlled by SPS concentration.
    Kao YJ; Li YJ; Shen YA; Chen CM
    Sci Rep; 2023 Jan; 13(1):428. PubMed ID: 36624120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of De-Twinning on Tensile Strength of Nano-Twinned Cu Films.
    Lee CH; Lin EJ; Wang JY; Lin YX; Wu CY; Chiu CY; Yeh CY; Huang BR; Fu KL; Liu CY
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34206189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment.
    Sayle TX; Inkson BJ; Karakoti A; Kumar A; Molinari M; Möbus G; Parker SC; Seal S; Sayle DC
    Nanoscale; 2011 Apr; 3(4):1823-37. PubMed ID: 21409243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the real-time atomistic deformation of nano twinned CrCoFeNi high entropy alloy.
    Yan S; H Qin Q; Zhong Z
    Nanotechnology; 2020 Sep; 31(38):385705. PubMed ID: 32503016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of substrate bias on the sputtering of high density (111)-nanotwinned Cu films on SiC chips.
    Yang ZH; Wu PC; Chuang TH
    Sci Rep; 2022 Sep; 12(1):15408. PubMed ID: 36104444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultimate Strength of Nanotwinned Face-Centered Cubic Metals.
    Xiao J; Deng C
    Phys Rev Lett; 2020 Dec; 125(26):266101. PubMed ID: 33449721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between the Microstructures of Bonding Interfaces and the Shear Strength of Cu-to-Cu Joints Using (111)-Oriented and Nanotwinned Cu.
    Juang JY; Lu CL; Li YJ; Tu KN; Chen C
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30477274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper.
    Hsiao HY; Liu CM; Lin HW; Liu TC; Lu CL; Huang YS; Chen C; Tu KN
    Science; 2012 May; 336(6084):1007-10. PubMed ID: 22628648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong Hall-Petch Type Behavior in the Elastic Strain Limit of Nanotwinned Gold Nanowires.
    Wang J; Sansoz F; Deng C; Xu G; Han G; Mao SX
    Nano Lett; 2015 Jun; 15(6):3865-70. PubMed ID: 25950984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eliminating Cu-Cu Bonding Interfaces Using Electroplated Copper and (111)-Oriented Nanotwinned Copper.
    Lu TF; Cheng YF; Wang PW; Yen YT; Wu YS
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data compilation on the effect of grain size, temperature, and texture on the strength of a single-phase FCC MnFeNi medium-entropy alloy.
    Schneider M; Werner F; Langenkämper D; Reinhart C; Laplanche G
    Data Brief; 2020 Feb; 28():104807. PubMed ID: 31871972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic Grain Growth in (111) Nanotwinned Cu Films by DC Electrodeposition.
    Lu TL; Shen YA; Wu JA; Chen C
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31905613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regularities of Microstructure Evolution in a Cu-Cr-Zr Alloy during Severe Plastic Deformation.
    Bodyakova A; Tkachev M; Raab GI; Kaibyshev R; Belyakov AN
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.