These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 32183215)

  • 41. Channel and feature selection in multifunction myoelectric control.
    Khushaba RN; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5182-5. PubMed ID: 18003175
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Review on electromyography based intention for upper limb control using pattern recognition for human-machine interaction.
    Asghar A; Jawaid Khan S; Azim F; Shakeel CS; Hussain A; Niazi IK
    Proc Inst Mech Eng H; 2022 May; 236(5):628-645. PubMed ID: 35118907
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms.
    Ortiz-Catalan M; Håkansson B; Brånemark R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):756-64. PubMed ID: 24710833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol.
    Stango A; Negro F; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):189-98. PubMed ID: 25389242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-density surface EMG maps from upper-arm and forearm muscles.
    Rojas-Martínez M; Mañanas MA; Alonso JF
    J Neuroeng Rehabil; 2012 Dec; 9():85. PubMed ID: 23216679
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robust Pattern Recognition Myoelectric Training for Improved Online Control within a 3D Virtual Environment.
    Woodward RB; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4701-4704. PubMed ID: 30441399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Adaptive Multi-Modal Control Strategy to Attenuate the Limb Position Effect in Myoelectric Pattern Recognition.
    Spieker V; Ganguly A; Haddadin S; Piazza C
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770709
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand.
    Chu JU; Moon I; Mun MS
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2232-9. PubMed ID: 17073328
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis.
    Karlik B; Tokhi MO; Alci M
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1255-61. PubMed ID: 14619995
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resolving the adverse impact of mobility on myoelectric pattern recognition in upper-limb multifunctional prostheses.
    Samuel OW; Li X; Geng Y; Asogbon MG; Fang P; Huang Z; Li G
    Comput Biol Med; 2017 Nov; 90():76-87. PubMed ID: 28961473
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Position Identification for Robust Myoelectric Control Against Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3121-3128. PubMed ID: 33196444
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees.
    Geng Y; Samuel OW; Wei Y; Li G
    Biomed Res Int; 2017; 2017():5090454. PubMed ID: 28523276
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Principal components analysis preprocessing to reduce controller delays in pattern recognition based myoelectric control.
    Hargrove L; Scheme E; Englehart K; Hudgins B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6512-5. PubMed ID: 18003517
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Examining the adverse effects of limb position on pattern recognition based myoelectric control.
    Scheme E; Fougner A; Stavdahl Ø; Chan AC; Englehart K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6337-40. PubMed ID: 21097173
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of isometric contractions based on High Density EMG maps.
    Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R
    J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prosthesis-guided training of pattern recognition-controlled myoelectric prosthesis.
    Chicoine CL; Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1876-9. PubMed ID: 23366279
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle reinnervation.
    Hargrove LJ; Lock BA; Simon AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1599-602. PubMed ID: 24110008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Virtual Rehabilitation Training System Based on Surface EMG Feature Extraction and Analysis.
    Meng Q; Zhang J; Yang X
    J Med Syst; 2019 Jan; 43(3):48. PubMed ID: 30666419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.