BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32183252)

  • 1. Electrospun Nanofibers: from Food to Energy by Engineered Electrodes in Microbial Fuel Cells.
    Massaglia G; Frascella F; Chiadò A; Sacco A; Marasso SL; Cocuzza M; Pirri CF; Quaglio M
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32183252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Living Bacteria Directly Embedded into Electrospun Nanofibers: Design of New Anode for Bio-Electrochemical Systems.
    Massaglia G; Sacco A; Chiodoni A; Pirri CF; Quaglio M
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoting the anode performance of microbial fuel cells with nano-molybdenum disulfide/carbon nanotubes composite catalyst.
    Guo W; Li X; Cui L; Li Y; Zhang H; Ni T
    Bioprocess Biosyst Eng; 2022 Jan; 45(1):159-170. PubMed ID: 34642822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode.
    Tao Y; Liu Q; Chen J; Wang B; Wang Y; Liu K; Li M; Jiang H; Lu Z; Wang D
    Environ Sci Technol; 2016 Jul; 50(14):7889-95. PubMed ID: 27294591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress of Nanostructure Modified Anodes in Microbial Fuel Cells.
    Kim M; Kim HW; Nam JY; In SI
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6891-9. PubMed ID: 26716261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis and Characterization of Multi-modified Anodes via Nitric Acid and PPy/AQDS in Microbial Fuel Cells].
    Shen WH; Zhu NW; Yin FH; Wu PX; Zhang YH
    Huan Jing Ke Xue; 2016 Sep; 37(9):3488-3497. PubMed ID: 29964785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1.
    Sun M; Zhang F; Tong ZH; Sheng GP; Chen YZ; Zhao Y; Chen YP; Zhou SY; Liu G; Tian YC; Yu HQ
    Biosens Bioelectron; 2010 Oct; 26(2):338-43. PubMed ID: 20801013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial Fuel Cells as Effective Tools for Energy Recovery and Antibiotic Detection in Water and Food.
    Massaglia G; Spisni G; Pirri CF; Quaglio M
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanofibers-Sheathed Graphite Rod Anode and Hydrophobic Cathode for Improved Performance Industrial Wastewater-Driven Microbial Fuel Cells.
    Barakat NAM; Ali RH; Kim HY; Nassar MM; Fadali OA; Tolba GMK; Moustafa HM; Ali MA
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Graphene/Poly(3,4-ethylenedioxythiophene) Hybrid as an Anode for High-Performance Microbial Fuel Cells.
    Wang Y; Zhao CE; Sun D; Zhang JR; Zhu JJ
    Chempluschem; 2013 Aug; 78(8):823-829. PubMed ID: 31986676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing Biomass-Based Graphene Oxide-Polyaniline-Ag Electrodes in Microbial Fuel Cells to Boost Energy Generation and Heavy Metal Removal.
    Yaqoob AA; Serrà A; Bhawani SA; Ibrahim MNM; Khan A; Alorfi HS; Asiri AM; Hussein MA; Khan I; Umar K
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells.
    Sonawane JM; Yadav A; Ghosh PC; Adeloju SB
    Biosens Bioelectron; 2017 Apr; 90():558-576. PubMed ID: 27825877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells.
    Chen Q; Pu W; Hou H; Hu J; Liu B; Li J; Cheng K; Huang L; Yuan X; Yang C; Yang J
    Bioresour Technol; 2018 Feb; 249():567-573. PubMed ID: 29091839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of microbes and potential exoelectrogenic bacteria on anode surface in microbial fuel cells.
    Sun Y; Zuo J; Cui L; Deng Q; Dang Y
    J Gen Appl Microbiol; 2010 Feb; 56(1):19-29. PubMed ID: 20339216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms.
    Uria N; Ferrera I; Mas J
    BMC Microbiol; 2017 Oct; 17(1):208. PubMed ID: 29047333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spraying carbon powder derived from mango wood biomass as high-performance anode in bio-electrochemical system.
    Li M; Li YW; Cai QY; Zhou SQ; Mo CH
    Bioresour Technol; 2020 Mar; 300():122623. PubMed ID: 31927344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical micro/nano structures of carbon composites as anodes for microbial fuel cells.
    Zhao Y; Watanabe K; Hashimoto K
    Phys Chem Chem Phys; 2011 Sep; 13(33):15016-21. PubMed ID: 21785787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Anodes for Microbial Fuel Cells: An Overview.
    Yaqoob AA; Ibrahim MNM; Rafatullah M; Chua YS; Ahmad A; Umar K
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32369902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.