These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32183327)

  • 1. Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches.
    Salamone F; Bellazzi A; Belussi L; Damato G; Danza L; Dell'Aquila F; Ghellere M; Megale V; Meroni I; Vitaletti W
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated Method for Personal Thermal Comfort Assessment and Optimization through Users' Feedback, IoT and Machine Learning: A Case Study
    Salamone F; Belussi L; Currò C; Danza L; Ghellere M; Guazzi G; Lenzi B; Megale V; Meroni I
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29772818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior.
    Katić K; Li R; Zeiler W
    Appl Ergon; 2020 May; 85():103078. PubMed ID: 32174366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of virtual environment on thermal perception: physical reaction and subjective thermal perception on outdoor scenarios in virtual reality.
    Wu C; Cui J; Xu X; Song D
    Int J Biometeorol; 2023 Aug; 67(8):1291-1301. PubMed ID: 37414908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personal comfort models based on a 6-month experiment using environmental parameters and data from wearables.
    Tartarini F; Schiavon S; Quintana M; Miller C
    Indoor Air; 2022 Nov; 32(11):e13160. PubMed ID: 36437680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between Indoor Environmental Data and Biometric Parameters for the Impact Assessment of a Living Wall in a ZEB Lab.
    Salamone F; Barozzi B; Danza L; Ghellere M; Meroni I
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat Flux Sensing for Machine-Learning-Based Personal Thermal Comfort Modeling.
    Jung W; Jazizadeh F; Diller TE
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-Color Interaction: Subjective Indoor Environmental Perception and Physiological Responses in Virtual Reality.
    Chinazzo G; Chamilothori K; Wienold J; Andersen M
    Hum Factors; 2021 May; 63(3):474-502. PubMed ID: 31928417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Identification of Surgical and Operative Factors Associated With Surgical Expertise in Virtual Reality Simulation.
    Winkler-Schwartz A; Yilmaz R; Mirchi N; Bissonnette V; Ledwos N; Siyar S; Azarnoush H; Karlik B; Del Maestro R
    JAMA Netw Open; 2019 Aug; 2(8):e198363. PubMed ID: 31373651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing thermal comfort prediction in high-speed trains through machine learning and physiological signals integration.
    Zhou W; Yang M; Yu X; Peng Y; Fan C; Xu D; Xiao Q
    J Therm Biol; 2024 Apr; 121():103828. PubMed ID: 38604115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using electroencephalogram to continuously discriminate feelings of personal thermal comfort between uncomfortably hot and comfortable environments.
    Wu M; Li H; Qi H
    Indoor Air; 2020 May; 30(3):534-543. PubMed ID: 31943395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-Term Thermal Comfort Monitoring via Wearable Sensing Techniques: Correlation between Environmental Metrics and Subjective Perception.
    Martins Gnecco V; Pigliautile I; Pisello AL
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal sensation prediction by soft computing methodology.
    Jović S; Arsić N; Vilimonović J; Petković D
    J Therm Biol; 2016 Dec; 62(Pt B):106-108. PubMed ID: 27888922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort.
    Choi KM; Park S; Im CH
    Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a Machine-Learning Approach for Sickness Prediction in 360° Stereoscopic Videos.
    Padmanaban N; Ruban T; Sitzmann V; Norcia AM; Wetzstein G
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1594-1603. PubMed ID: 29553929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Development of Internet of Things-Driven Fault Detection of Indoor Thermal Comfort: HVAC System Problems Case Study.
    Sahoh B; Kliangkhlao M; Kittiphattanabawon N
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The future surgical training paradigm: Virtual reality and machine learning in surgical education.
    Rogers MP; DeSantis AJ; Janjua H; Barry TM; Kuo PC
    Surgery; 2021 May; 169(5):1250-1252. PubMed ID: 33280858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study on the influence of virtual tourism spatial situation on the tourists' temperature comfort in the context of metaverse.
    Huang XT; Wang J; Wang Z; Wang L; Cheng C
    Front Psychol; 2022; 13():1062876. PubMed ID: 36687952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using machine-learning approach to distinguish patients with methamphetamine dependence from healthy subjects in a virtual reality environment.
    Ding X; Li Y; Li D; Li L; Liu X
    Brain Behav; 2020 Nov; 10(11):e01814. PubMed ID: 32862513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Navigating Virtual Environments Using Leg Poses and Smartphone Sensors.
    Tsaramirsis G; Buhari SM; Basheri M; Stojmenovic M
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.