These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32183623)

  • 1. Evolution of fossorial locomotion in the transition from tetrapod to snake-like in lizards.
    Morinaga G; Bergmann PJ
    Proc Biol Sci; 2020 Mar; 287(1923):20200192. PubMed ID: 32183623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinating tiny limbs and long bodies: Geometric mechanics of lizard terrestrial swimming.
    Chong B; Wang T; Erickson E; Bergmann PJ; Goldman DI
    Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2118456119. PubMed ID: 35759665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotion and palaeoclimate explain the re-evolution of quadrupedal body form in
    Bergmann PJ; Morinaga G; Freitas ES; Irschick DJ; Wagner GP; Siler CD
    Proc Biol Sci; 2020 Nov; 287(1938):20201994. PubMed ID: 33171093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prey-handling and the evolutionary ecology of sand-swimming lizards (Lerista : Scincidae).
    Pough FH; Preest MR; Fusari MH
    Oecologia; 1997 Oct; 112(3):351-361. PubMed ID: 28307484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative analysis of the post-cranial skeleton of fossorial and non-fossorial gymnophthalmid lizards.
    Roscito JG; Rodrigues MT
    J Morphol; 2013 Aug; 274(8):845-58. PubMed ID: 23508362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shifts in space and time: ecological transitions affect the evolution of resting metabolic rates in microteiid lizards.
    Bars-Closel M; Camacho A; Kohlsdorf T
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 29880636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life on the rocks: habitat use drives morphological and performance evolution in lizards.
    Goodman BA; Miles DB; Schwarzkopf L
    Ecology; 2008 Dec; 89(12):3462-71. PubMed ID: 19137951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How head shape and substrate particle size affect fossorial locomotion in lizards.
    Bergmann PJ; Berry DS
    J Exp Biol; 2021 Jun; 224(11):. PubMed ID: 34109985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergent Evolution of Elongate Forms in Craniates and of Locomotion in Elongate Squamate Reptiles.
    Bergmann PJ; Mann SDW; Morinaga G; Freitas ES; Siler CD
    Integr Comp Biol; 2020 Jul; 60(1):190-201. PubMed ID: 32227193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryonic development of the fossorial gymnophthalmid lizards Nothobachia ablephara and Calyptommatus sinebrachiatus.
    Roscito JG; Rodrigues MT
    Zoology (Jena); 2012 Oct; 115(5):302-18. PubMed ID: 22951270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angles and waves: intervertebral joint angles and axial kinematics of limbed lizards, limbless lizards, and snakes.
    Morinaga G; Bergmann PJ
    Zoology (Jena); 2019 Jun; 134():16-26. PubMed ID: 31146904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual system evolution and the nature of the ancestral snake.
    Simões BF; Sampaio FL; Jared C; Antoniazzi MM; Loew ER; Bowmaker JK; Rodriguez A; Hart NS; Hunt DM; Partridge JC; Gower DJ
    J Evol Biol; 2015 Jul; 28(7):1309-20. PubMed ID: 26012745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First evidence of convergent lifestyle signal in reptile skull roof microanatomy.
    Ebel R; Müller J; Ramm T; Hipsley C; Amson E
    BMC Biol; 2020 Nov; 18(1):185. PubMed ID: 33250048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Head shape evolution in Gymnophthalmidae: does habitat use constrain the evolution of cranial design in fossorial lizards?
    Barros FC; Herrel A; Kohlsdorf T
    J Evol Biol; 2011 Nov; 24(11):2423-33. PubMed ID: 21883615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From lizard body form to serpentiform morphology: The atlas-axis complex in African cordyliformes and their relatives.
    Čerňanský A
    J Morphol; 2016 Apr; 277(4):512-36. PubMed ID: 26873004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards.
    Bergmann PJ; Irschick DJ
    Evolution; 2010 Jun; 64(6):1569-82. PubMed ID: 20050911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor analysis of surface propulsion by three species of reduced-limbed fossorial lizards (Lerista: Scincidae) from western australia.
    Gans C; Fusari M
    J Morphol; 1994 Dec; 222(3):309-326. PubMed ID: 29865419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peculiar relationships among morphology, burrowing performance and sand type in two fossorial microteiid lizards.
    de Barros FC; Grizante MB; Zampieri FAM; Kohlsdorf T
    Zoology (Jena); 2021 Feb; 144():125880. PubMed ID: 33310388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How lizards turn into snakes: a phylogenetic analysis of body-form evolution in anguid lizards.
    Wiens JJ; Slingluff JL
    Evolution; 2001 Nov; 55(11):2303-18. PubMed ID: 11794789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. You Can't Run, but You Can Hide: The Skeleton of the Sand-Swimmer Lizard Calyptommatus leiolepis (Squamata: Gymnophthalmidae).
    Holovacs NT; Daza JD; Guerra C; Stanley EL; Montero R
    Anat Rec (Hoboken); 2020 May; 303(5):1305-1326. PubMed ID: 31469501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.