These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 32183698)
1. Genome relationships and LTR-retrotransposon diversity in three cultivated Capsicum L. (Solanaceae) species. de Assis R; Baba VY; Cintra LA; Gonçalves LSA; Rodrigues R; Vanzela ALL BMC Genomics; 2020 Mar; 21(1):237. PubMed ID: 32183698 [TBL] [Abstract][Full Text] [Related]
2. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Kim S; Park J; Yeom SI; Kim YM; Seo E; Kim KT; Kim MS; Lee JM; Cheong K; Shin HS; Kim SB; Han K; Lee J; Park M; Lee HA; Lee HY; Lee Y; Oh S; Lee JH; Choi E; Choi E; Lee SE; Jeon J; Kim H; Choi G; Song H; Lee J; Lee SC; Kwon JK; Lee HY; Koo N; Hong Y; Kim RW; Kang WH; Huh JH; Kang BC; Yang TJ; Lee YH; Bennetzen JL; Choi D Genome Biol; 2017 Nov; 18(1):210. PubMed ID: 29089032 [TBL] [Abstract][Full Text] [Related]
3. Full-length LTR retroelements in Capsicum annuum revealed a few species-specific family bursts with insertional preferences. Yañez-Santos AM; Paz RC; Paz-Sepúlveda PB; Urdampilleta JD Chromosome Res; 2021 Dec; 29(3-4):261-284. PubMed ID: 34086192 [TBL] [Abstract][Full Text] [Related]
4. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563 [TBL] [Abstract][Full Text] [Related]
5. Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes. de Souza TB; Chaluvadi SR; Johnen L; Marques A; González-Elizondo MS; Bennetzen JL; Vanzela ALL Ann Bot; 2018 Aug; 122(2):279-290. PubMed ID: 30084890 [TBL] [Abstract][Full Text] [Related]
6. Abundance of distal repetitive DNA sequences in de Assis R; Gonçalves LSA; Guyot R; Vanzela ALL Genome; 2023 Oct; 66(10):269-280. PubMed ID: 37364373 [TBL] [Abstract][Full Text] [Related]
7. An 82 bp tandem repeat family typical of 3' non-coding end of Gypsy/TAT LTR retrotransposons is conserved in Cintra LA; Souza TB; Parteka LM; Barreto LM; Pereira LFP; Gaeta ML; Guyot R; Vanzela ALL Genome; 2022 Mar; 65(3):137-151. PubMed ID: 34727516 [No Abstract] [Full Text] [Related]
8. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. Zedek F; Smerda J; Smarda P; Bureš P BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487 [TBL] [Abstract][Full Text] [Related]
9. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics. Thomas-Bulle C; Piednoël M; Donnart T; Filée J; Jollivet D; Bonnivard É BMC Genomics; 2018 Nov; 19(1):821. PubMed ID: 30442098 [TBL] [Abstract][Full Text] [Related]
10. Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. Park M; Park J; Kim S; Kwon JK; Park HM; Bae IH; Yang TJ; Lee YH; Kang BC; Choi D Plant J; 2012 Mar; 69(6):1018-29. PubMed ID: 22074025 [TBL] [Abstract][Full Text] [Related]
11. How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon hughesii Gagnon & G.P. Lewis (Leguminosae: Caesalpinioideae). Mata-Sucre Y; Sader M; Van-Lume B; Gagnon E; Pedrosa-Harand A; Leitch IJ; Lewis GP; Souza G Planta; 2020 Sep; 252(4):49. PubMed ID: 32918627 [TBL] [Abstract][Full Text] [Related]
12. Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis. da Costa ZP; Cauz-Santos LA; Ragagnin GT; Van Sluys MA; Dornelas MC; Berges H; de Mello Varani A; Vieira MLC Mol Biol Rep; 2019 Dec; 46(6):6117-6133. PubMed ID: 31549373 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary convergence or homology? Comparative cytogenomics of Caesalpinia group species (Leguminosae) reveals diversification in the pericentromeric heterochromatic composition. Van-Lume B; Mata-Sucre Y; Báez M; Ribeiro T; Huettel B; Gagnon E; Leitch IJ; Pedrosa-Harand A; Lewis GP; Souza G Planta; 2019 Dec; 250(6):2173-2186. PubMed ID: 31696317 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. Gao L; McCarthy EM; Ganko EW; McDonald JF BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813 [TBL] [Abstract][Full Text] [Related]
15. LTR-retrotransposons Tnt1 and T135 markers reveal genetic diversity and evolutionary relationships of domesticated peppers. Tam SM; Lefebvre V; Palloix A; Sage-Palloix AM; Mhiri C; Grandbastien MA Theor Appl Genet; 2009 Oct; 119(6):973-89. PubMed ID: 19618162 [TBL] [Abstract][Full Text] [Related]
16. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. Baucom RS; Estill JC; Chaparro C; Upshaw N; Jogi A; Deragon JM; Westerman RP; Sanmiguel PJ; Bennetzen JL PLoS Genet; 2009 Nov; 5(11):e1000732. PubMed ID: 19936065 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006 [TBL] [Abstract][Full Text] [Related]
18. New role of LTR-retrotransposons for emergence and expansion of disease-resistance genes and high-copy gene families in plants. Kim S; Choi D BMB Rep; 2018 Feb; 51(2):55-56. PubMed ID: 29353598 [TBL] [Abstract][Full Text] [Related]
19. Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Paz RC; Kozaczek ME; Rosli HG; Andino NP; Sanchez-Puerta MV Genetica; 2017 Oct; 145(4-5):417-430. PubMed ID: 28776161 [TBL] [Abstract][Full Text] [Related]
20. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Qin C; Yu C; Shen Y; Fang X; Chen L; Min J; Cheng J; Zhao S; Xu M; Luo Y; Yang Y; Wu Z; Mao L; Wu H; Ling-Hu C; Zhou H; Lin H; González-Morales S; Trejo-Saavedra DL; Tian H; Tang X; Zhao M; Huang Z; Zhou A; Yao X; Cui J; Li W; Chen Z; Feng Y; Niu Y; Bi S; Yang X; Li W; Cai H; Luo X; Montes-Hernández S; Leyva-González MA; Xiong Z; He X; Bai L; Tan S; Tang X; Liu D; Liu J; Zhang S; Chen M; Zhang L; Zhang L; Zhang Y; Liao W; Zhang Y; Wang M; Lv X; Wen B; Liu H; Luan H; Zhang Y; Yang S; Wang X; Xu J; Li X; Li S; Wang J; Palloix A; Bosland PW; Li Y; Krogh A; Rivera-Bustamante RF; Herrera-Estrella L; Yin Y; Yu J; Hu K; Zhang Z Proc Natl Acad Sci U S A; 2014 Apr; 111(14):5135-40. PubMed ID: 24591624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]