These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 32184010)
1. Simultaneous copper removal and electricity production and microbial community in microbial fuel cells with different cathode catalysts. Wu Y; Wang L; Jin M; Zhang K Bioresour Technol; 2020 Jun; 305():123166. PubMed ID: 32184010 [TBL] [Abstract][Full Text] [Related]
2. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell. Wu Y; Wang L; Jin M; Kong F; Qi H; Nan J Bioresour Technol; 2019 Jul; 283():129-137. PubMed ID: 30901585 [TBL] [Abstract][Full Text] [Related]
3. Tetracycline inhibition and transformation in microbial fuel cell systems: Performance, transformation intermediates, and microbial community structure. Long S; Zhao L; Chen J; Kim J; Huang CH; Pavlostathis SG Bioresour Technol; 2021 Feb; 322():124534. PubMed ID: 33360083 [TBL] [Abstract][Full Text] [Related]
4. Relationship between bioelectrochemical copper migration, reduction and electricity in a three-chamber microbial fuel cell. Wang H; Long X; Zhang J; Cao X; Liu S; Li X Chemosphere; 2020 Feb; 241():125097. PubMed ID: 31629235 [TBL] [Abstract][Full Text] [Related]
5. Copper removal and microbial community analysis in single-chamber microbial fuel cell. Wu Y; Zhao X; Jin M; Li Y; Li S; Kong F; Nan J; Wang A Bioresour Technol; 2018 Apr; 253():372-377. PubMed ID: 29361349 [TBL] [Abstract][Full Text] [Related]
6. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells. Lee YY; Kim TG; Cho KS J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818 [TBL] [Abstract][Full Text] [Related]
7. Copper recovery combined with electricity production in a microbial fuel cell. Heijne AT; Liu F; Weijden Rv; Weijma J; Buisman CJ; Hamelers HV Environ Sci Technol; 2010 Jun; 44(11):4376-81. PubMed ID: 20462261 [TBL] [Abstract][Full Text] [Related]
8. Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells. Liu Q; Yang Y; Mei X; Liu B; Chen C; Xing D Sci Total Environ; 2018 Aug; 631-632():695-701. PubMed ID: 29539598 [TBL] [Abstract][Full Text] [Related]
9. Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells. Wang Y; Wu J; Yang S; Li H; Li X Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29954125 [TBL] [Abstract][Full Text] [Related]
10. Limitation of voltage reversal in the degradation of azo dye by a stacked double-anode microbial fuel cell and characterization of the microbial community structure. Cao X; Wang H; Long X; Nishimura O; Li X Sci Total Environ; 2021 Feb; 754():142454. PubMed ID: 33254847 [TBL] [Abstract][Full Text] [Related]
11. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells. Cheng S; Liu W; Guo J; Sun D; Pan B; Ye Y; Ding W; Huang H; Li F Biosens Bioelectron; 2014 Jun; 56():264-70. PubMed ID: 24514078 [TBL] [Abstract][Full Text] [Related]
12. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition. Xie B; Gong W; Ding A; Yu H; Qu F; Tang X; Yan Z; Li G; Liang H Environ Sci Pollut Res Int; 2017 Oct; 24(29):23226-23235. PubMed ID: 28831702 [TBL] [Abstract][Full Text] [Related]
13. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. Tao HC; Liang M; Li W; Zhang LJ; Ni JR; Wu WM J Hazard Mater; 2011 May; 189(1-2):186-92. PubMed ID: 21377788 [TBL] [Abstract][Full Text] [Related]
14. Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants. Li J; Liu G; Zhang R; Luo Y; Zhang C; Li M Bioresour Technol; 2010 Jun; 101(11):4013-20. PubMed ID: 20137921 [TBL] [Abstract][Full Text] [Related]
15. Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells. Lefebvre O; Ooi WK; Tang Z; Abdullah-Al-Mamun M; Chua DH; Ng HY Bioresour Technol; 2009 Oct; 100(20):4907-10. PubMed ID: 19464880 [TBL] [Abstract][Full Text] [Related]
16. An insight into cathode options for microbial fuel cells. Lefebvre O; Al-Mamun A; Ooi WK; Tang Z; Chua DH; Ng HY Water Sci Technol; 2008; 57(12):2031-7. PubMed ID: 18587194 [TBL] [Abstract][Full Text] [Related]
17. Bio-electrodegradation of 2,4,6-Trichlorophenol by mixed microbial culture in dual chambered microbial fuel cells. Khan N; Khan MD; Ansari MY; Ahmad A; Khan MZ J Biosci Bioeng; 2019 Mar; 127(3):353-359. PubMed ID: 30482595 [TBL] [Abstract][Full Text] [Related]
18. [Influence of carboxylic carbon nanotube supported platinum catalyst on cathode oxygen reduction performance of MFC]. Tu LX; Zhu NW; Wu PX; Li P; Wu JH Huan Jing Ke Xue; 2013 Apr; 34(4):1617-22. PubMed ID: 23798151 [TBL] [Abstract][Full Text] [Related]
19. A novel bio-electro-Fenton process for eliminating sodium dodecyl sulphate from wastewater using dual chamber microbial fuel cell. Sathe SM; Chakraborty I; Sankar Cheela VR; Chowdhury S; Dubey BK; Ghangrekar MM Bioresour Technol; 2021 Dec; 341():125850. PubMed ID: 34474233 [TBL] [Abstract][Full Text] [Related]
20. Bioelectrochemical process for simultaneous removal of copper, ammonium and organic matter using an algae-assisted triple-chamber microbial fuel cell. Yang Z; Li J; Chen F; Xu L; Jin Y; Xu S; Wang J; Shen X; Zhang L; Song Y Sci Total Environ; 2021 Dec; 798():149327. PubMed ID: 34332380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]