These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 32184137)

  • 1. Effects of molecular weight and crystallizability of polylactide on the cellulose nanocrystal dispersion quality in their nanocomposites.
    Vatansever E; Arslan D; Sarul DS; Kahraman Y; Nofar M
    Int J Biol Macromol; 2020 Jul; 154():276-290. PubMed ID: 32184137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of solvent type on the dispersion quality of spray-and freeze-dried CNCs in PLA through rheological analysis.
    Özdemir B; Nofar M
    Carbohydr Polym; 2021 Sep; 268():118243. PubMed ID: 34127223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites.
    Kamal MR; Khoshkava V
    Carbohydr Polym; 2015 Jun; 123():105-14. PubMed ID: 25843840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fabrication of polylactide/cellulose nanocomposites with enhanced crystallization and mechanical properties.
    Chai H; Chang Y; Zhang Y; Chen Z; Zhong Y; Zhang L; Sui X; Xu H; Mao Z
    Int J Biol Macromol; 2020 Jul; 155():1578-1588. PubMed ID: 31751689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(lactic acid)/cellulose nanocrystal composites via the Pickering emulsion approach: Rheological, thermal and mechanical properties.
    Zhang Y; Cui L; Xu H; Feng X; Wang B; Pukánszky B; Mao Z; Sui X
    Int J Biol Macromol; 2019 Sep; 137():197-204. PubMed ID: 31255621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polylactide cellulose-based nanocomposites.
    Vatansever E; Arslan D; Nofar M
    Int J Biol Macromol; 2019 Sep; 137():912-938. PubMed ID: 31284009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization, structural relaxation and thermal degradation in Poly(L-lactide)/cellulose nanocrystal renewable nanocomposites.
    Lizundia E; Vilas JL; León LM
    Carbohydr Polym; 2015 Jun; 123():256-65. PubMed ID: 25843857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.
    Arrieta MP; Fortunati E; Dominici F; Rayón E; López J; Kenny JM
    Carbohydr Polym; 2014 Jul; 107():16-24. PubMed ID: 24702913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties.
    Lizundia E; Fortunati E; Dominici F; Vilas JL; León LM; Armentano I; Torre L; Kenny JM
    Carbohydr Polym; 2016 May; 142():105-13. PubMed ID: 26917380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and Rheological Properties of PLA, PBAT, and PLA/PBAT Blend Nanocomposites Containing CNCs.
    Mohammadi M; Heuzey MC; Carreau PJ; Taguet A
    Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33801672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing into the nucleation and reinforcing effects of poly (vinyl acetate) grafted cellulose nanocrystals in melt-processed poly (lactic acid) nanocomposites.
    Wu H; Liu Y; Wu H; Yuan Y; Zhang J
    Int J Biol Macromol; 2023 Mar; 231():123421. PubMed ID: 36731697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal degradation behaviour and crystallization kinetics of poly (lactic acid) and cellulose nanocrystals (CNC) based microcellular composite foams.
    Borkotoky SS; Chakraborty G; Katiyar V
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1518-1531. PubMed ID: 29981330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites.
    Monika ; Dhar P; Katiyar V
    Int J Biol Macromol; 2017 Nov; 104(Pt A):827-836. PubMed ID: 28648639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How surface modification of cellulose nanocrystals affects the crystallization process of poly (β-hydroxybutyrate).
    Chen J; Yang Y; Fan W; Zhu Y; Yang R; Xu Y
    Int J Biol Macromol; 2024 Sep; 276(Pt 1):134119. PubMed ID: 39098456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of polymorphs of cellulose nanocrystal on the thermal properties of poly(lactic acid)/cellulose nanocrystal composites.
    Zhao J; Zhao Y; Wang Z; Peng Z
    Eur Phys J E Soft Matter; 2016 Dec; 39(12):118. PubMed ID: 27928643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of PLA crystallization, transparency, and strength by adding the long aliphatic chains grafted CNC.
    Shi H; Jiang X; Liu G; Ma B; Lv Y; Xu P; Ma P; Zhang X; Liu T
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132223. PubMed ID: 38777688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals.
    Shi Q; Zhou C; Yue Y; Guo W; Wu Y; Wu Q
    Carbohydr Polym; 2012 Sep; 90(1):301-8. PubMed ID: 24751045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural Biodegradable Poly(3-hydroxybutyrate-
    Li F; Yu HY; Wang YY; Zhou Y; Zhang H; Yao JM; Abdalkarim SYH; Tam KC
    J Agric Food Chem; 2019 Oct; 67(39):10954-10967. PubMed ID: 31365242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends.
    Zhang X; Zhang Y
    Carbohydr Polym; 2016 Apr; 140():374-82. PubMed ID: 26876864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Biocompatibility of Bioabsorbable Nanocomposites of Aliphatic-Aromatic Copolyester and Cellulose Nanocrystals.
    Kashani Rahimi S; Aeinehvand R; Kim K; Otaigbe JU
    Biomacromolecules; 2017 Jul; 18(7):2179-2194. PubMed ID: 28616970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.