BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 32184246)

  • 21. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14.
    Jo J; Price-Whelan A; Cornell WC; Dietrich LEP
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa.
    Berger A; Dohnt K; Tielen P; Jahn D; Becker J; Wittmann C
    PLoS One; 2014; 9(4):e88368. PubMed ID: 24709961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa.
    La Rosa R; Johansen HK; Molin S
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reverse diauxie phenotype in
    Yung YP; McGill SL; Chen H; Park H; Carlson RP; Hanley L
    NPJ Biofilms Microbiomes; 2019; 5(1):31. PubMed ID: 31666981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung.
    Dingemans J; Monsieurs P; Yu SH; Crabbé A; Förstner KU; Malfroot A; Cornelis P; Van Houdt R
    mBio; 2016 Aug; 7(4):. PubMed ID: 27486191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria.
    Volke DC; Olavarría K; Nikel PI
    mSystems; 2021 Mar; 6(2):. PubMed ID: 33727391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global stress response in
    Bisht K; Elmassry MM; Al Mahmud H; Bhattacharjee S; Deonarine A; Black C; San Francisco MJ; Hamood AN; Wakeman CA
    bioRxiv; 2024 Mar; ():. PubMed ID: 38585990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients.
    Son MS; Matthews WJ; Kang Y; Nguyen DT; Hoang TT
    Infect Immun; 2007 Nov; 75(11):5313-24. PubMed ID: 17724070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary plasticity in the allosteric regulator-binding site of pyruvate kinase isoform PykA from
    Abdelhamid Y; Brear P; Greenhalgh J; Chee X; Rahman T; Welch M
    J Biol Chem; 2019 Oct; 294(42):15505-15516. PubMed ID: 31484721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Pseudomonas aeruginosa Complement of Lactate Dehydrogenases Enables Use of d- and l-Lactate and Metabolic Cross-Feeding.
    Lin YC; Cornell WC; Jo J; Price-Whelan A; Dietrich LEP
    mBio; 2018 Sep; 9(5):. PubMed ID: 30206167
    [No Abstract]   [Full Text] [Related]  

  • 32. A study of the flexibility of the carbon catabolic pathways of extremophilic P. aeruginosa san ai exposed to benzoate versus glucose as sole carbon sources by multi omics analytical platform.
    Medić A; Hüttmann N; Lješević M; Risha Y; Berezovski MV; Minić Z; Karadžić I
    Microbiol Res; 2022 Jun; 259():126998. PubMed ID: 35276454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of Carbon Source Supplementations on
    Sauvage S; Gaviard C; Tahrioui A; Coquet L; Le H; Alexandre S; Ben Abdelkrim A; Bouffartigues E; Lesouhaitier O; Chevalier S; Jouenne T; Hardouin J
    J Proteome Res; 2022 Jun; 21(6):1392-1407. PubMed ID: 35482949
    [No Abstract]   [Full Text] [Related]  

  • 34. The
    Margalit A; Carolan JC; Sheehan D; Kavanagh K
    Mol Cell Proteomics; 2020 Aug; 19(8):1346-1359. PubMed ID: 32447284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes.
    Bolten CJ; Heinzle E; Müller R; Wittmann C
    J Microbiol Biotechnol; 2009 Jan; 19(1):23-36. PubMed ID: 19190405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa.
    Williams HD; Zlosnik JE; Ryall B
    Adv Microb Physiol; 2007; 52():1-71. PubMed ID: 17027370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Entner-Doudoroff and Nonoxidative Pentose Phosphate Pathways Bypass Glycolysis and the Oxidative Pentose Phosphate Pathway in Ralstonia solanacearum.
    Jyoti P; Shree M; Joshi C; Prakash T; Ray SK; Satapathy SS; Masakapalli SK
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32156794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using (13)C metabolic flux analysis.
    Usui Y; Hirasawa T; Furusawa C; Shirai T; Yamamoto N; Mori H; Shimizu H
    Microb Cell Fact; 2012 Jun; 11():87. PubMed ID: 22721472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin.
    Marvig RL; Damkiær S; Khademi SM; Markussen TM; Molin S; Jelsbak L
    mBio; 2014 May; 5(3):e00966-14. PubMed ID: 24803516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.