BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 32184361)

  • 1. The Gut Microbiota in Camellia Weevils Are Influenced by Plant Secondary Metabolites and Contribute to Saponin Degradation.
    Zhang S; Shu J; Xue H; Zhang W; Zhang Y; Liu Y; Fang L; Wang Y; Wang H
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32184361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Enriched Acinetobacter in
    Li Z; Huang S; He X; Ma H; Zhou X; Lin H; Zhang S
    Microbiol Spectr; 2022 Dec; 10(6):e0227222. PubMed ID: 36413019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil-derived bacteria endow Camellia weevil with more ability to resist plant chemical defense.
    Zhang S; Li Z; Shu J; Xue H; Guo K; Zhou X
    Microbiome; 2022 Jun; 10(1):97. PubMed ID: 35752840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased Tea Saponin Content Influences the Diversity and Function of Plantation Soil Microbiomes.
    Zhang S; Kong J; Chen L; Guo K; Zhou X
    Microbiol Spectr; 2022 Feb; 10(1):e0232421. PubMed ID: 35019691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles.
    Berasategui A; Axelsson K; Nordlander G; Schmidt A; Borg-Karlson AK; Gershenzon J; Terenius O; Kaltenpoth M
    Mol Ecol; 2016 Aug; 25(16):4014-31. PubMed ID: 27199034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness.
    Berasategui A; Salem H; Paetz C; Santoro M; Gershenzon J; Kaltenpoth M; Schmidt A
    Mol Ecol; 2017 Aug; 26(15):4099-4110. PubMed ID: 28543918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut bacterial communities and their contribution to performance of specialist Altica flea beetles.
    Wei J; Segraves KA; Li WZ; Yang XK; Xue HJ
    Microb Ecol; 2020 Nov; 80(4):946-959. PubMed ID: 32880699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How seed defense and seed abundance predict dispersal and survival patterns in Camellia.
    Xiao Z; Huang X
    Integr Zool; 2020 Mar; 15(2):103-114. PubMed ID: 31149776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel metatranscriptome analysis reveals degradation of plant secondary metabolites by beetles and their gut symbionts.
    Wei J; Yang XK; Zhang SK; Segraves KA; Xue HJ
    Mol Ecol; 2022 Aug; 31(15):3999-4016. PubMed ID: 35665559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Transcriptome and Phytochemical Analysis Provides Insight into Triterpene Saponin Biosynthesis in Seeds and Flowers of the Tea Plant (
    Chen C; Zhu H; Kang J; Warusawitharana HK; Chen S; Wang K; Yu F; Wu Y; He P; Tu Y; Li B
    Metabolites; 2022 Feb; 12(3):. PubMed ID: 35323647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity and Abundance of Bacterial and Fungal Communities Inhabiting
    Qu H; Long Y; Wang X; Wang K; Chen L; Yang Y; Chen L
    Microorganisms; 2023 Aug; 11(9):. PubMed ID: 37764032
    [No Abstract]   [Full Text] [Related]  

  • 12. Elicitation of biomolecules as host defense arsenals during insect attacks on tea plants (Camellia sinensis (L.) Kuntze).
    Naskar S; Roy C; Ghosh S; Mukhopadhyay A; Hazarika LK; Chaudhuri RK; Roy S; Chakraborti D
    Appl Microbiol Biotechnol; 2021 Oct; 105(19):7187-7199. PubMed ID: 34515843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of fruit size of Camellia meiocarpa on growth of oil tea weevil, Curculio chinensis (Coleoptera: Curculionidae)].
    Li ZW; He LH; Ma L; Xia J; Zeng AP
    Ying Yong Sheng Tai Xue Bao; 2014 Dec; 25(12):3580-6. PubMed ID: 25876411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq.
    Wang YN; Tang L; Hou Y; Wang P; Yang H; Wei CL
    Funct Integr Genomics; 2016 Jul; 16(4):383-98. PubMed ID: 27098524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeography and the geographic cline in the armament of a seed-predatory weevil: effects of historical events vs. natural selection from the host plant.
    Toju H; Sota T
    Mol Ecol; 2006 Nov; 15(13):4161-73. PubMed ID: 17054510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural selection drives the fine-scale divergence of a coevolutionary arms race involving a long-mouthed weevil and its obligate host plant.
    Toju H
    BMC Evol Biol; 2009 Nov; 9():273. PubMed ID: 19941669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metapopulation structure of a seed-predator weevil and its host plant in arms race coevolution.
    Toju H; Ueno S; Taniguchi F; Sota T
    Evolution; 2011 Jun; 65(6):1707-22. PubMed ID: 21644958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest.
    Shukla SP; Beran F
    Mol Ecol; 2020 Dec; 29(23):4692-4705. PubMed ID: 33006166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut bacteria of weevils developing on plant roots under extreme desert conditions.
    Meng F; Bar-Shmuel N; Shavit R; Behar A; Segoli M
    BMC Microbiol; 2019 Dec; 19(1):311. PubMed ID: 31888482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-trophic Interaction of Gut Microbiota in a Tripartite System.
    Yi X; Guo J; Wang M; Xue C; Ju M
    Microb Ecol; 2021 May; 81(4):1075-1087. PubMed ID: 33190166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.