These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32184414)

  • 21. Effect of external electric field on the electronic properties of the AlAs/SiC van der Waals heterostructure.
    Zhang Z; Wan C; Li H; Liu C; Meng L; Yan X
    Phys Chem Chem Phys; 2023 Oct; 25(40):27766-27773. PubMed ID: 37814790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum Transport and Sub-Band Structure of Modulation-Doped GaAs/AlAs Core-Superlattice Nanowires.
    Irber DM; Seidl J; Carrad DJ; Becker J; Jeon N; Loitsch B; Winnerl J; Matich S; Döblinger M; Tang Y; Morkötter S; Abstreiter G; Finley JJ; Grayson M; Lauhon LJ; Koblmüller G
    Nano Lett; 2017 Aug; 17(8):4886-4893. PubMed ID: 28732167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal conductivity of GaAs/AlAs distributed Bragg reflectors in semiconductor disk laser: comparison of molecular dynamics simulation and analytic methods.
    Zhang P; Jiang M; Zhue R; Zhang D; Song Y
    Appl Opt; 2017 May; 56(15):4537-4542. PubMed ID: 29047886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quasi phase matching in GaAs--AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing.
    Saher Helmy A; Hutchings DC; Kleckner TC; Marsh JH; Bryce AC; Arnold JM; Stanley CR; Aitchison JS; Brown CT; Moutzouris K; Ebrahimzadeh M
    Opt Lett; 2000 Sep; 25(18):1370-2. PubMed ID: 18066220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Power Factor and Ultralow Lattice Thermal Conductivity Induced High Thermoelectric Performance of BiCuTeO/BiCuSeO Superlattice.
    Yang X; Sun Z; Ge G; Yang J
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation.
    Jooshesh A; Fesharaki F; Bahrami-Yekta V; Mahtab M; Tiedje T; Darcie TE; Gordon R
    Opt Express; 2017 Sep; 25(18):22140-22148. PubMed ID: 29041502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Picosecond electron bunches from GaAs/GaAsP strained superlattice photocathode.
    Jin X; Matsuba S; Honda Y; Miyajima T; Yamamoto M; Utiyama T; Takeda Y
    Ultramicroscopy; 2013 Jul; 130():44-8. PubMed ID: 23711697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lattice dynamics and Raman scattering by phonons of GaAs/AlAs(001) superlattices.
    Berdekas D; Ves S
    J Phys Condens Matter; 2009 Jul; 21(27):275405. PubMed ID: 21828489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Density Functional Theory Calculations Revealing Metal-like Band Structures and Work Function Variation for Ultrathin Gallium Arsenide (111) Surface Layers.
    Tan CS; Huang MH
    Chem Asian J; 2019 Jul; 14(13):2316-2321. PubMed ID: 31120175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unintentional high-density p-type modulation doping of a GaAs/AlAs core-multishell nanowire.
    Jadczak J; Plochocka P; Mitioglu A; Breslavetz I; Royo M; Bertoni A; Goldoni G; Smolenski T; Kossacki P; Kretinin A; Shtrikman H; Maude DK
    Nano Lett; 2014 May; 14(5):2807-14. PubMed ID: 24745828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. He-Ion Microscopy as a High-Resolution Probe for Complex Quantum Heterostructures in Core-Shell Nanowires.
    Pöpsel C; Becker J; Jeon N; Döblinger M; Stettner T; Gottschalk YT; Loitsch B; Matich S; Altzschner M; Holleitner AW; Finley JJ; Lauhon LJ; Koblmüller G
    Nano Lett; 2018 Jun; 18(6):3911-3919. PubMed ID: 29781624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal phase induced bandgap modifications in AlAs nanowires probed by resonant Raman spectroscopy.
    Funk S; Li A; Ercolani D; Gemmi M; Sorba L; Zardo I
    ACS Nano; 2013 Feb; 7(2):1400-7. PubMed ID: 23281738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-plane heat conduction in III-V semiconductor superlattices.
    Kothari K; Malhotra A; Maldovan M
    J Phys Condens Matter; 2019 Aug; 31(34):345301. PubMed ID: 31082804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conduction-band minimum of (GaAs)1/(AlAs)1 superlattices: Relationship to X minimum of AlAs.
    Ge W; Schmidt WD; Sturge MD; Pfeiffer LN; West KW
    Phys Rev B Condens Matter; 1991 Aug; 44(7):3432-3435. PubMed ID: 9999961
    [No Abstract]   [Full Text] [Related]  

  • 35. Ab initio (GaAs)3(AlAs)3 (001) superlattice calculations: Band offsets and formation enthalpy.
    Bylander DM; Kleinman L
    Phys Rev B Condens Matter; 1987 Aug; 36(6):3229-3236. PubMed ID: 9943232
    [No Abstract]   [Full Text] [Related]  

  • 36. High-Performance Photovoltaic Materials Based on the Superlattice Structures of Organic-Inorganic Halide Perovskite and Superhalogen Hybrid Perovskite.
    Li D; Li D; Zhang H; Yang A; Liang C
    J Phys Chem Lett; 2020 Jul; 11(13):5282-5294. PubMed ID: 32531164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Performance Pockels Effect Modulation and Switching in Silicon-Based GaP/Si, AlP/Si, ZnS/Si, AlN/3C-SiC, GaAs/Ge, ZnSe/GaAs, and ZnSe/Ge Superlattice-On-Insulator Integrated Circuits.
    De Leonardis F; Soref R
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduced Dislocation of GaAs Layer Grown on Ge-Buffered Si (001) Substrate Using Dislocation Filter Layers for an O-Band InAs/GaAs Quantum Dot Narrow-Ridge Laser.
    Du Y; Wei W; Xu B; Wang G; Li B; Miao Y; Zhao X; Kong Z; Lin H; Yu J; Su J; Dong Y; Wang W; Ye T; Zhang J; Radamson HH
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ab Initio calculations of the anisotropic dielectric tensor of GaAs/AlAs superlattices.
    Botti S; Vast N; Reining L; Olevano V; Andreani LC
    Phys Rev Lett; 2002 Nov; 89(21):216803. PubMed ID: 12443441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering band gap and electronic transport in organic-inorganic halide perovskites by superlattices.
    Singh R; Kottokkaran R; Dalal VL; Balasubramanian G
    Nanoscale; 2017 Jun; 9(25):8600-8607. PubMed ID: 28534909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.