These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32184506)

  • 1. Simultaneous Measurements of Specific Heat, Electrical Resistivity, and Hemispherical Total Emittance by a Pulse Heating Technique: Hafnium-3 (Wt. %) Zirconium, 1500 to 2400 K.
    Cezairliyan A; McClure JL
    J Res Natl Bur Stand A Phys Chem; 1975; 79A(2):431-436. PubMed ID: 32184506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Measurement of Specific Heat, Electrical Resistivity, and Hemispherical Total Emittance of Niobium-1 (Wt. %) Zirconium Alloy in the Range 1500 to 2700 K by a Transient (Subsecond) Technique.
    Cezairliyan A
    J Res Natl Bur Stand A Phys Chem; 1973; 77A(1):45-48. PubMed ID: 32189726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Measurements of Heat Capacity, Electrical Resistivity and Hemispherical Total Emittance by a Pulse Heating Technique: Zirconium, 1500 to 2100 K.
    Cezairliyan A; Righini F
    J Res Natl Bur Stand A Phys Chem; 1974; 78A(4):509-514. PubMed ID: 32189801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Measurements of Heat Capacity, Electrical Resistivity, and Hemispherical Total Emittance by a Pulse Heating Technique: Vanadium, 1500 to 2100 K.
    Cezairliyan A; Righini F; McClure JL
    J Res Natl Bur Stand A Phys Chem; 1974; 78A(2):143-147. PubMed ID: 32189778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Speed (Subsecond) Measurement of Heat Capacity, Electrical Resistivity, and Thermal Radiation Properties of Niobium in the Range 1500 to 2700 K.
    Cezairliyan A
    J Res Natl Bur Stand A Phys Chem; 1971; 75A(6):565-571. PubMed ID: 34876752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophysical Measurements on Iron Above 1500 K Using a Transient (Subsecond) Technique.
    Cezairliyan A; McClure JL
    J Res Natl Bur Stand A Phys Chem; 1974; 78A(1):1-4. PubMed ID: 32189769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Speed (Subsecond) Measurement of Heat Capacity, Electrical Resistivity, and Thermal Radiation Properties of Tantalum in the Range 1900 to 3200 K.
    Cezairliyan A; McClure JL; Beckett CW
    J Res Natl Bur Stand A Phys Chem; 1971; 75A(1):1-13. PubMed ID: 34876708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Speed (Subsecond) Measurement of Heat Capacity, Electrical Resistivity, and Thermal Radiation Properties of Tungsten in the Range 2000 to 3600 K.
    Cezairliyan A; McClure JL
    J Res Natl Bur Stand A Phys Chem; 1971; 75A(4):283-290. PubMed ID: 34876734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Speed (Subsecond) Measurement of Heat Capacity, Electrical Resistivity, and Thermal Radiation Properties of Molybdenum in the Range 1900 to 2800 K.
    Cezairliyan A; Morse MS; Berman HA; Beckett CW
    J Res Natl Bur Stand A Phys Chem; 1970; 74A(1):65-92. PubMed ID: 32523173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic Studies of the
    Cezairliyan A; Righini F
    J Res Natl Bur Stand A Phys Chem; 1975; 79A(1):81-84. PubMed ID: 32184501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melting Point, Normal Spectral Emittance (at the Melting Point), and Electrical Resistivity (above 1900 K) of Titanium by a Pulse Heating Method.
    Cezairliyan A; Miiller AP
    J Res Natl Bur Stand (1977); 1977; 82(2):119-122. PubMed ID: 34565959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of Melting Point and Radiance Temperature (at Melting Point and at 653 nm) of Hafnium-3 (wt. %) Zirconium by a Pulse Heating Method.
    Cezairliyan A; McClure JL
    J Res Natl Bur Stand A Phys Chem; 1976; 80A(4):659-662. PubMed ID: 32196287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic Study of the
    Cezairliyan A; Miiller AP
    J Res Natl Bur Stand (1977); 1978; 83(2):127-132. PubMed ID: 34565975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of Melting Point, Normal Spectral Emittance (at Melting Point) and Electrical Resistivity (Near Melting Point) of Some Refractory Alloys.
    Cezairliyan A
    J Res Natl Bur Stand A Phys Chem; 1974; 78A(1):5-8. PubMed ID: 32189770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple pulse-heating experiments with different current to determine total emissivity, heat capacity, and electrical resistivity of electrically conductive materials at high temperatures.
    Watanabe H; Yamashita Y
    Rev Sci Instrum; 2012 Jan; 83(1):014904. PubMed ID: 22299976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total hemispherical emittance of Irtran 2, 4, and 6 at low temperatures.
    Schleiger ER; Webb LA
    Appl Opt; 1968 Jan; 7(1):33-5. PubMed ID: 20062402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of total hemispherical emittance of transparent materials at low temperature.
    Schleiger ER
    Appl Opt; 1967 May; 6(5):919-23. PubMed ID: 20057875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbides and Nitrides of Zirconium and Hafnium.
    Ushakov SV; Navrotsky A; Hong QJ; van de Walle A
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31454900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiance Temperature (at 653 nm) of Iron at Its Melting Point.
    Cezairliyan A; McClure JL
    J Res Natl Bur Stand A Phys Chem; 1975; 79A(4):541-544. PubMed ID: 32184512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facility for assessing spectral normal emittance of solid materials at high temperature.
    Mercatelli L; Meucci M; Sani E
    Appl Opt; 2015 Oct; 54(29):8700-5. PubMed ID: 26479806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.