BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32184769)

  • 1. Regulation of Microbial Metabolic Rates Using CRISPR Interference With Expanded PAM Sequences.
    Kim B; Kim HJ; Lee SJ
    Front Microbiol; 2020; 11():282. PubMed ID: 32184769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference.
    Kim B; Kim HJ; Lee SJ
    J Microbiol Biotechnol; 2020 Dec; 30(12):1919-1926. PubMed ID: 32958732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences.
    Karlson CKS; Mohd-Noor SN; Nolte N; Tan BC
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the Scope of Bacterial CRISPR Activation with PAM-Flexible dCas9 Variants.
    Kiattisewee C; Karanjia AV; Legut M; Daniloski Z; Koplik SE; Nelson J; Kleinstiver BP; Sanjana NE; Carothers JM; Zalatan JG
    ACS Synth Biol; 2022 Dec; 11(12):4103-4112. PubMed ID: 36378874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans.
    Dhamad AE; Lessner DJ
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens.
    Kim SK; Kim H; Ahn WC; Park KH; Woo EJ; Lee DH; Lee SG
    ACS Synth Biol; 2017 Jul; 6(7):1273-1282. PubMed ID: 28375596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/dCas9-Mediated Multiplex Gene Repression in Streptomyces.
    Zhao Y; Li L; Zheng G; Jiang W; Deng Z; Wang Z; Lu Y
    Biotechnol J; 2018 Sep; 13(9):e1800121. PubMed ID: 29862648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of CRISPR interference on strain development in biotechnology.
    Schultenkämper K; Brito LF; Wendisch VF
    Biotechnol Appl Biochem; 2020 Jan; 67(1):7-21. PubMed ID: 32064678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel and Efficient Method for Bacteria Genome Editing Employing both CRISPR/Cas9 and an Antibiotic Resistance Cassette.
    Zhang H; Cheng QX; Liu AM; Zhao GP; Wang J
    Front Microbiol; 2017; 8():812. PubMed ID: 28529507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-dCas9-mediated knockdown of prtR, an essential gene in Pseudomonas aeruginosa.
    Xiang L; Qi F; Jiang L; Tan J; Deng C; Wei Z; Jin S; Huang G
    Lett Appl Microbiol; 2020 Oct; 71(4):386-393. PubMed ID: 32506497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942.
    Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC
    Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological and Transcriptional Responses to CRISPRi Knockdown of Essential Genes in Escherichia coli.
    Silvis MR; Rajendram M; Shi H; Osadnik H; Gray AN; Cesar S; Peters JM; Hearne CC; Kumar P; Todor H; Huang KC; Gross CA
    mBio; 2021 Oct; 12(5):e0256121. PubMed ID: 34634934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.
    Palermo G; Ricci CG; Fernando A; Basak R; Jinek M; Rivalta I; Batista VS; McCammon JA
    J Am Chem Soc; 2017 Nov; 139(45):16028-16031. PubMed ID: 28764328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli.
    Cress BF; Jones JA; Kim DC; Leitz QD; Englaender JA; Collins SM; Linhardt RJ; Koffas MA
    Nucleic Acids Res; 2016 May; 44(9):4472-85. PubMed ID: 27079979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing Targets for Improving Nutrient Use Efficiency and Nutrient Stress Adaptation.
    Sathee L; Jagadhesan B; Pandesha PH; Barman D; Adavi B S; Nagar S; Krishna GK; Tripathi S; Jha SK; Chinnusamy V
    Front Genet; 2022; 13():900897. PubMed ID: 35774509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robust CRISPR Interference Gene Repression System in Pseudomonas.
    Tan SZ; Reisch CR; Prather KLJ
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311279
    [No Abstract]   [Full Text] [Related]  

  • 19. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of a Synthetic Amino Acid into dCas9 Improves Control of Gene Silencing.
    Koopal B; Kruis AJ; Claassens NJ; Nobrega FL; van der Oost J
    ACS Synth Biol; 2019 Feb; 8(2):216-222. PubMed ID: 30668910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.