These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 32185122)
1. Enabling automated herbarium sheet image post-processing using neural network models for color reference chart detection. Ledesma DA; Powell CA; Shaw J; Qin H Appl Plant Sci; 2020 Mar; 8(3):e11331. PubMed ID: 32185122 [TBL] [Abstract][Full Text] [Related]
2. Harnessing Large-Scale Herbarium Image Datasets Through Representation Learning. Walker BE; Tucker A; Nicolson N Front Plant Sci; 2021; 12():806407. PubMed ID: 35095977 [TBL] [Abstract][Full Text] [Related]
3. Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation. Hussein BR; Malik OA; Ong WH; Slik JWF Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283110 [TBL] [Abstract][Full Text] [Related]
4. Performant barcode decoding for herbarium specimen images using vector-assisted region proposals (VARP). Powell C; Shaw J Appl Plant Sci; 2021 May; 9(5):. PubMed ID: 34141497 [TBL] [Abstract][Full Text] [Related]
5. Going deeper in the automated identification of Herbarium specimens. Carranza-Rojas J; Goeau H; Bonnet P; Mata-Montero E; Joly A BMC Evol Biol; 2017 Aug; 17(1):181. PubMed ID: 28797242 [TBL] [Abstract][Full Text] [Related]
7. Increasing the efficiency of digitization workflows for herbarium specimens. Tulig M; Tarnowsky N; Bevans M; Anthony Kirchgessner ; Thiers BM Zookeys; 2012; (209):103-13. PubMed ID: 22859882 [TBL] [Abstract][Full Text] [Related]
8. Small herbaria contribute unique biogeographic records to county, locality, and temporal scales. Marsico TD; Krimmel ER; Carter JR; Gillespie EL; Lowe PD; McCauley R; Morris AB; Nelson G; Smith M; Soteropoulos DL; Monfils AK Am J Bot; 2020 Nov; 107(11):1577-1587. PubMed ID: 33217783 [TBL] [Abstract][Full Text] [Related]
9. Digitization workflows for flat sheets and packets of plants, algae, and fungi. Nelson G; Sweeney P; Wallace LE; Rabeler RK; Allard D; Brown H; Carter JR; Denslow MW; Ellwood ER; Germain-Aubrey CC; Gilbert E; Gillespie E; Goertzen LR; Legler B; Marchant DB; Marsico TD; Morris AB; Murrell Z; Nazaire M; Neefus C; Oberreiter S; Paul D; Ruhfel BR; Sasek T; Shaw J; Soltis PS; Watson K; Weeks A; Mast AR Appl Plant Sci; 2015 Sep; 3(9):. PubMed ID: 26421256 [TBL] [Abstract][Full Text] [Related]
10. The Herbarium 2021 Half-Earth Challenge Dataset and Machine Learning Competition. de Lutio R; Park JY; Watson KA; D'Aronco S; Wegner JD; Wieringa JJ; Tulig M; Pyle RL; Gallaher TJ; Brown G; Guymer G; Franks A; Ranatunga D; Baba Y; Belongie SJ; Michelangeli FA; Ambrose BA; Little DP Front Plant Sci; 2021; 12():787127. PubMed ID: 35178056 [TBL] [Abstract][Full Text] [Related]
11. Digitizing specimens in a small herbarium: A viable workflow for collections working with limited resources. Harris KM; Marsico TD Appl Plant Sci; 2017 Apr; 5(4):. PubMed ID: 28439474 [TBL] [Abstract][Full Text] [Related]
12. Applications of deep convolutional neural networks to digitized natural history collections. Schuettpelz E; Frandsen PB; Dikow RB; Brown A; Orli S; Peters M; Metallo A; Funk VA; Dorr LJ Biodivers Data J; 2017; (5):e21139. PubMed ID: 29200929 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive leaf size traits dataset for seven plant species from digitised herbarium specimen images covering more than two centuries. Kommineni VK; Tautenhahn S; Baddam P; Gaikwad J; Wieczorek B; Triki A; Kattge J Biodivers Data J; 2021; 9():e69806. PubMed ID: 34316273 [TBL] [Abstract][Full Text] [Related]
14. Analyzing trait-climate relationships within and among taxa using machine learning and herbarium specimens. Wilde BC; Bragg JG; Cornwell W Am J Bot; 2023 May; 110(5):e16167. PubMed ID: 37043678 [TBL] [Abstract][Full Text] [Related]
15. Convolutional neural network for automated mass segmentation in mammography. Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952 [TBL] [Abstract][Full Text] [Related]
16. Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification. Unger J; Merhof D; Renner S BMC Evol Biol; 2016 Nov; 16(1):248. PubMed ID: 27852219 [TBL] [Abstract][Full Text] [Related]
17. The US Virtual Herbarium: working with individual herbaria to build a national resource. Barkworth ME; Murrell ZE Zookeys; 2012; (209):55-73. PubMed ID: 22859878 [TBL] [Abstract][Full Text] [Related]
18. Inselect: Automating the Digitization of Natural History Collections. Hudson LN; Blagoderov V; Heaton A; Holtzhausen P; Livermore L; Price BW; van der Walt S; Smith VS PLoS One; 2015; 10(11):e0143402. PubMed ID: 26599208 [TBL] [Abstract][Full Text] [Related]
19. GinJinn: An object-detection pipeline for automated feature extraction from herbarium specimens. Ott T; Palm C; Vogt R; Oberprieler C Appl Plant Sci; 2020 Jun; 8(6):e11351. PubMed ID: 32626606 [TBL] [Abstract][Full Text] [Related]
20. Use of globally unique identifiers (GUIDs) to link herbarium specimen records to physical specimens. Nelson G; Sweeney P; Gilbert E Appl Plant Sci; 2018 Feb; 6(2):e1027. PubMed ID: 29732258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]