These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 32185405)

  • 1. I-waves in motor cortex revisited.
    Ziemann U
    Exp Brain Res; 2020 Aug; 238(7-8):1601-1610. PubMed ID: 32185405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex.
    Di Lazzaro V; Ziemann U
    Front Neural Circuits; 2013; 7():18. PubMed ID: 23407686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. I-waves in motor cortex.
    Ziemann U; Rothwell JC
    J Clin Neurophysiol; 2000 Jul; 17(4):397-405. PubMed ID: 11012042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical activity after stimulation of the corticospinal tract in the spinal cord.
    Costa P; Deletis V
    Clin Neurophysiol; 2016 Feb; 127(2):1726-1733. PubMed ID: 26679418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological effects of non-invasive brain stimulation.
    Di Lazzaro V
    Handb Clin Neurol; 2013; 116():367-74. PubMed ID: 24112909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial direct current stimulation effects on the excitability of corticospinal axons of the human cerebral cortex.
    Di Lazzaro V; Ranieri F; Profice P; Pilato F; Mazzone P; Capone F; Insola A; Oliviero A
    Brain Stimul; 2013 Jul; 6(4):641-3. PubMed ID: 23085442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor cortical and other cortical interneuronal networks that generate very high frequency waves.
    Amassian VE; Stewart M
    Suppl Clin Neurophysiol; 2003; 56():119-42. PubMed ID: 14677387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of TMS-induced I-waves in motor cortex.
    Rusu CV; Murakami M; Ziemann U; Triesch J
    Brain Stimul; 2014; 7(3):401-14. PubMed ID: 24680789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses.
    Mishra AM; Pal A; Gupta D; Carmel JB
    J Physiol; 2017 Nov; 595(22):6953-6968. PubMed ID: 28752624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multipulse transcranial magnetic stimulation of human motor cortex produces short-latency corticomotor facilitation via two distinct mechanisms.
    Kesselheim J; Takemi M; Christiansen L; Karabanov AN; Siebner HR
    J Neurophysiol; 2023 Feb; 129(2):410-420. PubMed ID: 36629338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-frequency repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.
    Di Lazzaro V; Pilato F; Dileone M; Profice P; Oliviero A; Mazzone P; Insola A; Ranieri F; Tonali PA; Rothwell JC
    J Physiol; 2008 Sep; 586(18):4481-7. PubMed ID: 18653655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex.
    Di Lazzaro V; Pilato F; Dileone M; Profice P; Oliviero A; Mazzone P; Insola A; Ranieri F; Meglio M; Tonali PA; Rothwell JC
    J Physiol; 2008 Aug; 586(16):3871-9. PubMed ID: 18566003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in late I-waves influence motor cortex plasticity induction in older adults.
    Opie GM; Cirillo J; Semmler JG
    J Physiol; 2018 Jul; 596(13):2597-2609. PubMed ID: 29667190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
    Urbin MA; Ozdemir RA; Tazoe T; Perez MA
    J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of motor cortex rTMS on corticospinal descending activity.
    Di Lazzaro V; Profice P; Pilato F; Dileone M; Oliviero A; Ziemann U
    Clin Neurophysiol; 2010 Apr; 121(4):464-73. PubMed ID: 20096628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.
    Di Lazzaro V; Pilato F; Saturno E; Oliviero A; Dileone M; Mazzone P; Insola A; Tonali PA; Ranieri F; Huang YZ; Rothwell JC
    J Physiol; 2005 Jun; 565(Pt 3):945-50. PubMed ID: 15845575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel cortical target to enhance hand motor output in humans with spinal cord injury.
    Long J; Federico P; Perez MA
    Brain; 2017 Jun; 140(6):1619-1632. PubMed ID: 28549131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsed Facilitation of Corticospinal Excitability by the Sensorimotor μ-Alpha Rhythm.
    Bergmann TO; Lieb A; Zrenner C; Ziemann U
    J Neurosci; 2019 Dec; 39(50):10034-10043. PubMed ID: 31685655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential Activation of Unique Motor Cortical Networks With Transcranial Magnetic Stimulation: A Review of the Physiological, Functional, and Clinical Evidence.
    Opie GM; Semmler JG
    Neuromodulation; 2021 Jul; 24(5):813-828. PubMed ID: 33295685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.