These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Genomic prediction of hybrid performance: comparison of the efficiency of factorial and tester designs used as training sets in a multiparental connected reciprocal design for maize silage. Lorenzi A; Bauland C; Mary-Huard T; Pin S; Palaffre C; Guillaume C; Lehermeier C; Charcosset A; Moreau L Theor Appl Genet; 2022 Sep; 135(9):3143-3160. PubMed ID: 35918515 [TBL] [Abstract][Full Text] [Related]
4. Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize ( Giraud H; Bauland C; Falque M; Madur D; Combes V; Jamin P; Monteil C; Laborde J; Palaffre C; Gaillard A; Blanchard P; Charcosset A; Moreau L Genetics; 2017 Nov; 207(3):1167-1180. PubMed ID: 28971957 [TBL] [Abstract][Full Text] [Related]
5. Linkage Analysis and Association Mapping QTL Detection Models for Hybrids Between Multiparental Populations from Two Heterotic Groups: Application to Biomass Production in Maize ( Giraud H; Bauland C; Falque M; Madur D; Combes V; Jamin P; Monteil C; Laborde J; Palaffre C; Gaillard A; Blanchard P; Charcosset A; Moreau L G3 (Bethesda); 2017 Nov; 7(11):3649-3657. PubMed ID: 28963164 [TBL] [Abstract][Full Text] [Related]
6. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Technow F; Schrag TA; Schipprack W; Bauer E; Simianer H; Melchinger AE Genetics; 2014 Aug; 197(4):1343-55. PubMed ID: 24850820 [TBL] [Abstract][Full Text] [Related]
7. Quantitative trait loci mapping in hybrids between Dent and Flint maize multiparental populations reveals group-specific QTL for silage quality traits with variable pleiotropic effects on yield. Seye AI; Bauland C; Giraud H; Mechin V; Reymond M; Charcosset A; Moreau L Theor Appl Genet; 2019 May; 132(5):1523-1542. PubMed ID: 30734114 [TBL] [Abstract][Full Text] [Related]
8. Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize. Giraud H; Lehermeier C; Bauer E; Falque M; Segura V; Bauland C; Camisan C; Campo L; Meyer N; Ranc N; Schipprack W; Flament P; Melchinger AE; Menz M; Moreno-González J; Ouzunova M; Charcosset A; Schön CC; Moreau L Genetics; 2014 Dec; 198(4):1717-34. PubMed ID: 25271305 [TBL] [Abstract][Full Text] [Related]
9. Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects. Technow F; Riedelsheimer C; Schrag TA; Melchinger AE Theor Appl Genet; 2012 Oct; 125(6):1181-94. PubMed ID: 22733443 [TBL] [Abstract][Full Text] [Related]
10. Novel strategies for genomic prediction of untested single-cross maize hybrids using unbalanced historical data. Dias KOG; Piepho HP; Guimarães LJM; Guimarães PEO; Parentoni SN; Pinto MO; Noda RW; Magalhães JV; Guimarães CT; Garcia AAF; Pastina MM Theor Appl Genet; 2020 Feb; 133(2):443-455. PubMed ID: 31758202 [TBL] [Abstract][Full Text] [Related]
11. General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents. Larièpe A; Moreau L; Laborde J; Bauland C; Mezmouk S; Décousset L; Mary-Huard T; Fiévet JB; Gallais A; Dubreuil P; Charcosset A Theor Appl Genet; 2017 Feb; 130(2):403-417. PubMed ID: 27913832 [TBL] [Abstract][Full Text] [Related]
12. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids. Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254 [TBL] [Abstract][Full Text] [Related]
13. Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction. Lehermeier C; Krämer N; Bauer E; Bauland C; Camisan C; Campo L; Flament P; Melchinger AE; Menz M; Meyer N; Moreau L; Moreno-González J; Ouzunova M; Pausch H; Ranc N; Schipprack W; Schönleben M; Walter H; Charcosset A; Schön CC Genetics; 2014 Sep; 198(1):3-16. PubMed ID: 25236445 [TBL] [Abstract][Full Text] [Related]
14. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694 [TBL] [Abstract][Full Text] [Related]
15. Genomic Prediction of Complex Traits in an Allogamous Annual Crop: The Case of Maize Single-Cross Hybrids. Martins Oliveira IC; Bernardeli A; Soler Guilhen JH; Pastina MM Methods Mol Biol; 2022; 2467():543-567. PubMed ID: 35451790 [TBL] [Abstract][Full Text] [Related]
16. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. Yang J; Mezmouk S; Baumgarten A; Buckler ES; Guill KE; McMullen MD; Mumm RH; Ross-Ibarra J PLoS Genet; 2017 Sep; 13(9):e1007019. PubMed ID: 28953891 [TBL] [Abstract][Full Text] [Related]
17. Genomic prediction of hybrid performance for agronomic traits in sorghum. Sapkota S; Boatwright JL; Kumar N; Myers M; Cox A; Ackerman A; Caughman W; Brenton ZW; Boyles RE; Kresovich S G3 (Bethesda); 2023 Apr; 13(4):. PubMed ID: 36454599 [TBL] [Abstract][Full Text] [Related]
18. Phenotypic Data from Inbred Parents Can Improve Genomic Prediction in Pearl Millet Hybrids. Liang Z; Gupta SK; Yeh CT; Zhang Y; Ngu DW; Kumar R; Patil HT; Mungra KD; Yadav DV; Rathore A; Srivastava RK; Gupta R; Yang J; Varshney RK; Schnable PS; Schnable JC G3 (Bethesda); 2018 Jul; 8(7):2513-2522. PubMed ID: 29794163 [TBL] [Abstract][Full Text] [Related]