BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32185434)

  • 21. Sequence-Guided Redesign of an Omega-Transaminase from Bacillus megaterium for the Asymmetric Synthesis of Chiral Amines.
    Xu Z; Xu J; Zhang T; Wang Z; Wu J; Yang L
    Chembiochem; 2024 May; ():e202400285. PubMed ID: 38752893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones.
    Teixeira IS; Farias AB; Horta BAC; Milagre HMS; de Souza ROMA; Bornscheuer UT; Milagre CDF
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacillus anthracis ω-amino acid:pyruvate transaminase employs a different mechanism for dual substrate recognition than other amine transaminases.
    Steffen-Munsberg F; Matzel P; Sowa MA; Berglund P; Bornscheuer UT; Höhne M
    Appl Microbiol Biotechnol; 2016 May; 100(10):4511-21. PubMed ID: 26795966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations.
    Huang J; Xie DF; Feng Y
    Biochem Biophys Res Commun; 2017 Jan; 483(1):397-402. PubMed ID: 28017723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis.
    Xie DF; Yang JX; Lv CJ; Mei JQ; Wang HP; Hu S; Zhao WR; Cao JR; Tu JL; Huang J; Mei LH
    J Biotechnol; 2019 Mar; 293():8-16. PubMed ID: 30703468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones.
    Farnberger JE; Lorenz E; Richter N; Wendisch VF; Kroutil W
    Microb Cell Fact; 2017 Jul; 16(1):132. PubMed ID: 28754115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amine Transaminase Engineering for Spatially Bulky Substrate Acceptance.
    Weiß MS; Pavlidis IV; Spurr P; Hanlon SP; Wirz B; Iding H; Bornscheuer UT
    Chembiochem; 2017 Jun; 18(11):1022-1026. PubMed ID: 28334484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. β-Phenylalanine Ester Synthesis from Stable β-Keto Ester Substrate Using Engineered ω-Transaminases.
    Buß O; Voss M; Delavault A; Gorenflo P; Syldatk C; Bornscheuer U; Rudat J
    Molecules; 2018 May; 23(5):. PubMed ID: 29783679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved Stability and Catalytic Efficiency of ω-Transaminase in Aqueous Mixture of Deep Eutectic Solvents.
    Wang H; Masuku MV; Tao Y; Yang J; Kuang Y; Lyu C; Huang J; Yang S
    Molecules; 2023 May; 28(9):. PubMed ID: 37175305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving thermostability of (R)-selective amine transaminase from Aspergillus terreus through introduction of disulfide bonds.
    Xie DF; Fang H; Mei JQ; Gong JY; Wang HP; Shen XY; Huang J; Mei LH
    Biotechnol Appl Biochem; 2018 Mar; 65(2):255-262. PubMed ID: 28639260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Features and technical applications of ω-transaminases.
    Malik MS; Park ES; Shin JS
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1163-71. PubMed ID: 22555915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the omega-transaminases from different microorganisms and application to production of chiral amines.
    Shin JS; Kim BG
    Biosci Biotechnol Biochem; 2001 Aug; 65(8):1782-8. PubMed ID: 11577718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Machine Learning Study on the Thermostability Prediction of (R)-
    Jia LL; Sun TT; Wang Y; Shen Y
    Biomed Res Int; 2021; 2021():2593748. PubMed ID: 34447850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Single Mutation Increases the Thermostability and Activity of
    Zhu WL; Hu S; Lv CJ; Zhao WR; Wang HP; Mei JQ; Mei LH; Huang J
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30934681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination.
    Jiang W; Wang Y
    J Microbiol Biotechnol; 2020 Jan; 30(1):146-154. PubMed ID: 31546300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Engineering ω-transaminase by random mutagenesis and semi-rational design for the synthesis of (R)-(+)-1-(1-naphthyl)ethylamine].
    Cao X; Han R; Fang H; Ni Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Sep; 36(9):1828-1837. PubMed ID: 33164459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement in the Thermostability of a β-Amino Acid Converting ω-Transaminase by Using FoldX.
    Buß O; Muller D; Jager S; Rudat J; Rabe KS
    Chembiochem; 2018 Feb; 19(4):379-387. PubMed ID: 29120530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic Analysis of R-Selective ω-Transaminases for Determination of Intrinsic Kinetic Parameters and Computational Modeling of Kinetic Resolution of Chiral Amine.
    Han SW; Shin JS
    Appl Biochem Biotechnol; 2020 May; 191(1):92-103. PubMed ID: 31997135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designing a novel (R)-ω-transaminase for asymmetric synthesis of sitagliptin intermediate via motif swapping and semi-rational design.
    Zhu FY; Huang MY; Zheng K; Zhang XJ; Cai X; Huang LG; Liu ZQ; Zheng YG
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127348. PubMed ID: 37820904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Turning thermostability of Aspergillus terreus (R)-selective transaminase At-ATA by synthetic shuffling.
    Fan F; Liu C; Cao J; Lyu C; Qiu S; Hu S; Sun T; Mei J; Wang H; Li Y; Zhao W; Mei L; Huang J
    J Biotechnol; 2023 Feb; 364():66-74. PubMed ID: 36708998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.