These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32185611)

  • 1. Flatness of musculoskeletal systems under functional electrical stimulation.
    Benoussaad M; Rotella F; Chaibi I
    Med Biol Eng Comput; 2020 May; 58(5):1113-1126. PubMed ID: 32185611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonlinear mathematical model of electrically stimulated skeletal muscle.
    Dorgan SJ; O'Malley MJ
    IEEE Trans Rehabil Eng; 1997 Jun; 5(2):179-94. PubMed ID: 9184904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closed-Loop Asynchronous Neuromuscular Electrical Stimulation Prolongs Functional Movements in the Lower Body.
    Downey RJ; Cheng TH; Bellman MJ; Dixon WE
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1117-27. PubMed ID: 25935038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional electrical stimulation of gluteus medius reduces the medial joint reaction force of the knee during level walking.
    Rane L; Bull AM
    Arthritis Res Ther; 2016 Nov; 18(1):255. PubMed ID: 27809923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation and Use of a Musculoskeletal Gait Model to Study the Role of Functional Electrical Stimulation.
    Ding Z; Azmi NL; Bull AMJ
    IEEE Trans Biomed Eng; 2019 Mar; 66(3):892-897. PubMed ID: 30183617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of an isokinetic knee dynamometer for evaluation of functional electrical stimulation strategies.
    Aksöz EA; Laubacher M; Riener R; Hunt KJ
    Med Eng Phys; 2019 Nov; 73():100-106. PubMed ID: 31421979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Closed-Loop Functional Electrical Stimulation Control of Muscle Activation with Evoked Electromyography Feedback for Spinal Cord Injured Patients.
    Li Z; Guiraud D; Andreu D; Gelis A; Fattal C; Hayashibe M
    Int J Neural Syst; 2018 Aug; 28(6):1750063. PubMed ID: 29378445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion control of the ankle joint with a multiple contact nerve cuff electrode: a simulation study.
    Park HJ; Durand DM
    Biol Cybern; 2014 Aug; 108(4):445-57. PubMed ID: 24939581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES).
    Jaramillo Cienfuegos P; Shoemaker A; Grange RW; Abaid N; Leonessa A
    PLoS One; 2017; 12(3):e0172761. PubMed ID: 28273101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of closed-loop control algorithms for regulating electrically stimulated knee movements in individuals with spinal cord injury.
    Lynch CL; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):539-48. PubMed ID: 22772375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling open-loop stability of a human arm driven by a functional electrical stimulation neuroprosthesis.
    Liao YW; Schearer EM; Hu X; Perreault EJ; Tresch MC; Lynch KM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3598-601. PubMed ID: 24110508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Electrical Stimulation (FES) in the Diagnosis and Treatment of Musculoskeletal and Neuromuscular Control Abnormalities in Horses - Selected Case Studies.
    Schils S; Ober T
    J Equine Vet Sci; 2022 Oct; 117():104078. PubMed ID: 35830906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A lower extremity model for muscle-driven simulation of activity using explicit finite element modeling.
    Hume DR; Navacchia A; Rullkoetter PJ; Shelburne KB
    J Biomech; 2019 Feb; 84():153-160. PubMed ID: 30630624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the length dependence of isometric force in human quadriceps muscles.
    Perumal R; Wexler AS; Ding J; Binder-Macleod SA
    J Biomech; 2002 Jul; 35(7):919-30. PubMed ID: 12052394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcutaneous Functional Electrical Stimulation Controlled by a System of Sensors for the Lower Limbs: A Systematic Review.
    Chaikho L; Clark E; Raison M
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion control of musculoskeletal systems with redundancy.
    Park H; Durand DM
    Biol Cybern; 2008 Dec; 99(6):503-16. PubMed ID: 18985380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients.
    Hara Y
    J Nippon Med Sch; 2008 Feb; 75(1):4-14. PubMed ID: 18360073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Nonlinear Dynamics-Based Estimator for Functional Electrical Stimulation: Preliminary Results From Lower-Leg Extension Experiments.
    Allen M; Zhong Q; Kirsch N; Dani A; Clark WW; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2365-2374. PubMed ID: 28885155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced modeling environment for developing and testing FES control systems.
    Davoodi R; Brown IE; Loeb GE
    Med Eng Phys; 2003 Jan; 25(1):3-9. PubMed ID: 12485781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and simulation of musculoskeletal system of human lower limb based on tensegrity structure.
    Wang Z; Yang C; Feng K; Qin X
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1282-1293. PubMed ID: 31553276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.