BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32186241)

  • 1. The utility of the single-subject method for comparison of temporal-spatial gait changes between a microprocessor and non-microprocessor prosthetic knees.
    Howard CL; Wallace C; Perry B; Stokic DS
    Prosthet Orthot Int; 2020 Jun; 44(3):133-144. PubMed ID: 32186241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study.
    Hasenoehrl T; Schmalz T; Windhager R; Domayer S; Dana S; Ambrozy C; Palma S; Crevenna R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):157-165. PubMed ID: 28399722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation.
    Fuenzalida Squella SA; Kannenberg A; Brandão Benetti Â
    Prosthet Orthot Int; 2018 Apr; 42(2):228-235. PubMed ID: 28691574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subject-specific responses to an adaptive ankle prosthesis during incline walking.
    Lamers EP; Eveld ME; Zelik KE
    J Biomech; 2019 Oct; 95():109273. PubMed ID: 31431348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of mobility and user satisfaction between a microprocessor knee and a standard prosthetic knee: a summary of seven single-subject trials.
    Howard CL; Wallace C; Perry B; Stokic DS
    Int J Rehabil Res; 2018 Mar; 41(1):63-73. PubMed ID: 29293160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transitioning to a microprocessor-controlled prosthetic knee: Executive functioning during single and dual-task gait.
    Ramstrand N; Rusaw DF; Möller SF
    Prosthet Orthot Int; 2020 Feb; 44(1):27-35. PubMed ID: 31826702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of a user-adaptive prosthetic knee across varying walking speeds: A randomized cross-over trial.
    Prinsen EC; Nederhand MJ; Sveinsdóttir HS; Prins MR; van der Meer F; Koopman HFJM; Rietman JS
    Gait Posture; 2017 Jan; 51():254-260. PubMed ID: 27838569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-individual biomechanical effects of a non-microprocessor-controlled stance-yielding prosthetic knee during ramp descent in persons with unilateral transfemoral amputation.
    Okita Y; Yamasaki N; Nakamura T; Mita T; Kubo T; Mitsumoto A; Akune T
    Prosthet Orthot Int; 2019 Feb; 43(1):55-61. PubMed ID: 30051754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking.
    Möller S; Rusaw D; Hagberg K; Ramstrand N
    Prosthet Orthot Int; 2019 Jun; 43(3):257-265. PubMed ID: 30375285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilot study of the microprocessor-controlled prosthetic knee with a novel hydraulic damper.
    Zhang Y; Cao W; Yu H; Meng Q; Chen W
    Technol Health Care; 2020; 28(1):93-97. PubMed ID: 31476188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps.
    Lura DJ; Wernke MM; Carey SL; Kahle JT; Miro RM; Highsmith MJ
    Clin Biomech (Bristol, Avon); 2015 Feb; 30(2):175-81. PubMed ID: 25537443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benefits of the Genium microprocessor controlled prosthetic knee on ambulation, mobility, activities of daily living and quality of life: a systematic literature review.
    Mileusnic MP; Rettinger L; Highsmith MJ; Hahn A
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):453-464. PubMed ID: 31469023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of walking speed and prosthetic knee control type on external mechanical work in transfemoral prosthesis users.
    Pinhey SR; Murata H; Hisano G; Ichimura D; Hobara H; Major MJ
    J Biomech; 2022 Mar; 134():110984. PubMed ID: 35182901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial.
    Jayaraman C; Mummidisetty CK; Albert MV; Lipschutz R; Hoppe-Ludwig S; Mathur G; Jayaraman A
    J Neuroeng Rehabil; 2021 May; 18(1):88. PubMed ID: 34034753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perceived self-efficacy and specific self-reported outcomes in persons with lower-limb amputation using a non-microprocessor-controlled versus a microprocessor-controlled prosthetic knee.
    Möller S; Hagberg K; Samulesson K; Ramstrand N
    Disabil Rehabil Assist Technol; 2018 Apr; 13(3):220-225. PubMed ID: 28366038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.