These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 32186293)
1. Unraveling the mechanism of biomimetic hydrogen fuel production - a first principles molecular dynamics study. Puthenkalathil RC; Etinski M; Ensing B Phys Chem Chem Phys; 2020 May; 22(19):10447-10454. PubMed ID: 32186293 [TBL] [Abstract][Full Text] [Related]
2. The Molecular Proceedings of Biological Hydrogen Turnover. Haumann M; Stripp ST Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical reduction and protonation of a biomimetic diiron azadithiolate hexacarbonyl complex: Mechanistic insights. Bourrez M; Gloaguen F Bioelectrochemistry; 2023 Oct; 153():108488. PubMed ID: 37329847 [TBL] [Abstract][Full Text] [Related]
4. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Rauchfuss TB Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848 [TBL] [Abstract][Full Text] [Related]
5. Density functional study of the thermodynamics of hydrogen production by tetrairon hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a hydrogenase model. Surawatanawong P; Hall MB Inorg Chem; 2010 Jun; 49(12):5737-47. PubMed ID: 20481518 [TBL] [Abstract][Full Text] [Related]
6. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution. Orain C; Quentel F; Gloaguen F ChemSusChem; 2014 Feb; 7(2):638-43. PubMed ID: 24127363 [TBL] [Abstract][Full Text] [Related]
7. Ligand versus metal protonation of an iron hydrogenase active site mimic. Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials. Surawatanawong P; Tye JW; Darensbourg MY; Hall MB Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544 [TBL] [Abstract][Full Text] [Related]
9. Isolation, observation, and computational modeling of proposed intermediates in catalytic proton reductions with the hydrogenase mimic Fe2(CO)6S2C6H4. Wright RJ; Zhang W; Yang X; Fasulo M; Tilley TD Dalton Trans; 2012 Jan; 41(1):73-82. PubMed ID: 22031098 [TBL] [Abstract][Full Text] [Related]
10. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Senger M; Mebs S; Duan J; Shulenina O; Laun K; Kertess L; Wittkamp F; Apfel UP; Happe T; Winkler M; Haumann M; Stripp ST Phys Chem Chem Phys; 2018 Jan; 20(5):3128-3140. PubMed ID: 28884175 [TBL] [Abstract][Full Text] [Related]
11. [Ni(Et2PCH2NMeCH2PEt2)2]2+ as a functional model for hydrogenases. Curtis CJ; Miedaner A; Ciancanelli R; Ellis WW; Noll BC; Rakowski DuBois M; DuBois DL Inorg Chem; 2003 Jan; 42(1):216-27. PubMed ID: 12513098 [TBL] [Abstract][Full Text] [Related]
12. Structural and Kinetic Studies of Intermediates of a Biomimetic Diiron Proton-Reduction Catalyst. Wang S; Aster A; Mirmohades M; Lomoth R; Hammarström L Inorg Chem; 2018 Jan; 57(2):768-776. PubMed ID: 29297686 [TBL] [Abstract][Full Text] [Related]
13. Direct Spectroscopic Detection of Key Intermediates and the Turnover Process in Catalytic H Wang S; Pullen S; Weippert V; Liu T; Ott S; Lomoth R; Hammarström L Chemistry; 2019 Aug; 25(47):11135-11140. PubMed ID: 31210385 [TBL] [Abstract][Full Text] [Related]
14. Lewis acid protection turns cyanide containing [FeFe]-hydrogenase mimics into proton reduction catalysts. Redman HJ; Huang P; Haumann M; Cheah MH; Berggren G Dalton Trans; 2022 Mar; 51(12):4634-4643. PubMed ID: 35212328 [TBL] [Abstract][Full Text] [Related]
15. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Ghosh S; Hogarth G; Hollingsworth N; Holt KB; Richards I; Richmond MG; Sanchez BE; Unwin D Dalton Trans; 2013 May; 42(19):6775-92. PubMed ID: 23503781 [TBL] [Abstract][Full Text] [Related]
16. Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by Mebs S; Duan J; Wittkamp F; Stripp ST; Happe T; Apfel UP; Winkler M; Haumann M Inorg Chem; 2019 Mar; 58(6):4000-4013. PubMed ID: 30802044 [TBL] [Abstract][Full Text] [Related]
17. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection. Leidel N; Chernev P; Havelius KG; Schwartz L; Ott S; Haumann M J Am Chem Soc; 2012 Aug; 134(34):14142-57. PubMed ID: 22860512 [TBL] [Abstract][Full Text] [Related]
18. Photoinduced Terminal Hydride of [FeFe]-Hydrogenase Biomimetic Complexes. Niu S; Nelson AE; De La Torre P; Li H; Works CF; Hall MB Inorg Chem; 2019 Oct; 58(20):13737-13741. PubMed ID: 31566967 [TBL] [Abstract][Full Text] [Related]
19. Selenium makes the difference: protonation of [FeFe]-hydrogenase mimics with diselenolato ligands. Abul-Futouh H; El-Khateeb M; Görls H; Asali KJ; Weigand W Dalton Trans; 2017 Feb; 46(9):2937-2947. PubMed ID: 28197594 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of Nitrogenase H Khadka N; Milton RD; Shaw S; Lukoyanov D; Dean DR; Minteer SD; Raugei S; Hoffman BM; Seefeldt LC J Am Chem Soc; 2017 Sep; 139(38):13518-13524. PubMed ID: 28851217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]