These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Targeting p16 Zysman M; Baptista BR; Essari LA; Taghizadeh S; Thibault de Ménonville C; Giffard C; Issa A; Franco-Montoya ML; Breau M; Souktani R; Aissat A; Caeymaex L; Lizé M; Van Nhieu JT; Jung C; Rottier R; Cruzeiro MD; Adnot S; Epaud R; Chabot F; Lanone S; Boczkowski J; Boyer L Am J Respir Crit Care Med; 2020 Oct; 202(8):1088-1104. PubMed ID: 32628504 [No Abstract] [Full Text] [Related]
5. PDGF-A signaling is required for secondary alveolar septation and controls epithelial proliferation in the developing lung. Gouveia L; Betsholtz C; Andrae J Development; 2018 Apr; 145(7):. PubMed ID: 29636361 [TBL] [Abstract][Full Text] [Related]
6. Cumulative effects of neonatal hyperoxia on murine alveolar structure and function. Cox AM; Gao Y; Perl AT; Tepper RS; Ahlfeld SK Pediatr Pulmonol; 2017 May; 52(5):616-624. PubMed ID: 28186703 [TBL] [Abstract][Full Text] [Related]
7. Airway Remodeling and Hyperreactivity in a Model of Bronchopulmonary Dysplasia and Their Modulation by IL-1 Receptor Antagonist. Royce SG; Nold MF; Bui C; Donovan C; Lam M; Lamanna E; Rudloff I; Bourke JE; Nold-Petry CA Am J Respir Cell Mol Biol; 2016 Dec; 55(6):858-868. PubMed ID: 27482635 [TBL] [Abstract][Full Text] [Related]
8. Sex-related differences in long-term pulmonary outcomes of neonatal hyperoxia in mice. Namba F; Ogawa R; Ito M; Watanabe T; Dennery PA; Tamura M Exp Lung Res; 2016; 42(2):57-65. PubMed ID: 27070483 [TBL] [Abstract][Full Text] [Related]
9. Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia. Nardiello C; Mižíková I; Silva DM; Ruiz-Camp J; Mayer K; Vadász I; Herold S; Seeger W; Morty RE Dis Model Mech; 2017 Feb; 10(2):185-196. PubMed ID: 28067624 [TBL] [Abstract][Full Text] [Related]
10. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. Velten M; Heyob KM; Rogers LK; Welty SE J Appl Physiol (1985); 2010 May; 108(5):1347-56. PubMed ID: 20223995 [TBL] [Abstract][Full Text] [Related]
11. Pulmonary vascular disease is evident in gene regulation of experimental bronchopulmonary dysplasia. Revhaug C; Zasada M; Rognlien AGW; Günther CC; Grabowska A; Książek T; Madetko-Talowska A; Szewczyk K; Bik-Multanowski M; Kwinta P; Pietrzyk JJ; Baumbusch LO; Saugstad OD J Matern Fetal Neonatal Med; 2020 Jun; 33(12):2122-2130. PubMed ID: 30428746 [No Abstract] [Full Text] [Related]
12. Intermittent CPAP limits hyperoxia-induced lung damage in a rabbit model of bronchopulmonary dysplasia. Gie AG; Salaets T; Vignero J; Regin Y; Vanoirbeek J; Deprest J; Toelen J Am J Physiol Lung Cell Mol Physiol; 2020 May; 318(5):L976-L987. PubMed ID: 32186390 [TBL] [Abstract][Full Text] [Related]
13. Progressive Vascular Functional and Structural Damage in a Bronchopulmonary Dysplasia Model in Preterm Rabbits Exposed to Hyperoxia. Jiménez J; Richter J; Nagatomo T; Salaets T; Quarck R; Wagennar A; Wang H; Vanoirbeek J; Deprest J; Toelen J Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27783043 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of microRNA-29a alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice via upregulation of GAB1. Hu Y; Xie L; Yu J; Fu H; Zhou D; Liu H Mol Med; 2019 Dec; 26(1):3. PubMed ID: 31892308 [TBL] [Abstract][Full Text] [Related]