These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 32186474)
1. PRCI ambient NO Panek JA; McCarthy JM; Huth AZ; Krol AJ; Nowak C J Air Waste Manag Assoc; 2020 May; 70(5):504-521. PubMed ID: 32186474 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of NO2 predictions by the plume volume molar ratio method (PVMRM) and ozone limiting method (OLM) in AERMOD using new field observations. Hendrick EM; Tino VR; Hanna SR; Egan BA J Air Waste Manag Assoc; 2013 Jul; 63(7):844-54. PubMed ID: 23926853 [TBL] [Abstract][Full Text] [Related]
3. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496 [TBL] [Abstract][Full Text] [Related]
4. Emissions variability processor (EMVAP): design, evaluation, and application. Paine R; Szembek C; Heinold D; Knipping E; Kumar N J Air Waste Manag Assoc; 2014 Dec; 64(12):1390-402. PubMed ID: 25562935 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of low wind modeling approaches for two tall-stack databases. Paine R; Samani O; Kaplan M; Knipping E; Kumar N J Air Waste Manag Assoc; 2015 Nov; 65(11):1341-53. PubMed ID: 26302223 [TBL] [Abstract][Full Text] [Related]
6. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861 [TBL] [Abstract][Full Text] [Related]
7. Methane emissions from natural gas compressor stations in the transmission and storage sector: measurements and comparisons with the EPA greenhouse gas reporting program protocol. Subramanian R; Williams LL; Vaughn TL; Zimmerle D; Roscioli JR; Herndon SC; Yacovitch TI; Floerchinger C; Tkacik DS; Mitchell AL; Sullivan MR; Dallmann TR; Robinson AL Environ Sci Technol; 2015 Mar; 49(5):3252-61. PubMed ID: 25668051 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal features of severe air pollution in northern Taiwan. Yu TY; Chang IC Environ Sci Pollut Res Int; 2006 Jul; 13(4):268-75. PubMed ID: 16910125 [TBL] [Abstract][Full Text] [Related]
9. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related]
10. Expected ozone benefits of reducing nitrogen oxide (NO Vinciguerra T; Bull E; Canty T; He H; Zalewsky E; Woodman M; Aburn G; Ehrman S; Dickerson RR J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304 [TBL] [Abstract][Full Text] [Related]
11. Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex. Seangkiatiyuth K; Surapipith V; Tantrakarnapa K; Lothongkum AW J Environ Sci (China); 2011; 23(6):931-40. PubMed ID: 22066216 [TBL] [Abstract][Full Text] [Related]
12. Field evaluations of newly available "interference-free" monitors for nitrogen dioxide and ozone at near-road and conventional National Ambient Air Quality Standards compliance sites. Leston AR; Ollison WM J Air Waste Manag Assoc; 2017 Nov; 67(11):1240-1248. PubMed ID: 28633004 [TBL] [Abstract][Full Text] [Related]
13. MOVES-Matrix and distributed computing for microscale line source dispersion analysis. Liu H; Xu X; Rodgers MO; Xu YA; Guensler RL J Air Waste Manag Assoc; 2017 Jul; 67(7):763-775. PubMed ID: 28166458 [TBL] [Abstract][Full Text] [Related]
14. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9-12, 2015. Dreessen J; Sullivan J; Delgado R J Air Waste Manag Assoc; 2016 Sep; 66(9):842-62. PubMed ID: 26963934 [TBL] [Abstract][Full Text] [Related]
15. AERMOD performance evaluation for three coal-fired electrical generating units in Southwest Indiana. Frost KD J Air Waste Manag Assoc; 2014 Mar; 64(3):280-90. PubMed ID: 24701687 [TBL] [Abstract][Full Text] [Related]
16. Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Arhami M; Kamali N; Rajabi MM Environ Sci Pollut Res Int; 2013 Jul; 20(7):4777-89. PubMed ID: 23292230 [TBL] [Abstract][Full Text] [Related]
17. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard. Simon H; Baker KR; Akhtar F; Napelenok SL; Possiel N; Wells B; Timin B Environ Sci Technol; 2013 Mar; 47(5):2304-13. PubMed ID: 23256562 [TBL] [Abstract][Full Text] [Related]
18. A Monte Carlo method for summing modeled and background pollutant concentrations. Dhammapala R; Bowman C; Schulte J J Air Waste Manag Assoc; 2017 Aug; 67(8):836-846. PubMed ID: 28278032 [TBL] [Abstract][Full Text] [Related]
19. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions. Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212 [TBL] [Abstract][Full Text] [Related]
20. Precursor reductions and ground-level ozone in the Continental United States. Hidy GM; Blanchard CL J Air Waste Manag Assoc; 2015 Oct; 65(10):1261-82. PubMed ID: 26252366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]