BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32187001)

  • 1. The Stochastic Delta Rule: Faster and More Accurate Deep Learning Through Adaptive Weight Noise.
    Frazier-Logue N; Hanson SJ
    Neural Comput; 2020 May; 32(5):1018-1032. PubMed ID: 32187001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recomputation of the Dense Layers for Performance Improvement of DCNN.
    Yang Y; Wu QMJ; Feng X; Akilan T
    IEEE Trans Pattern Anal Mach Intell; 2020 Nov; 42(11):2912-2925. PubMed ID: 31107643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network.
    Chen R; Wang M; Lai Y
    PLoS One; 2020; 15(7):e0235783. PubMed ID: 32634167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Fault Prediction System for Electromechanical Sensor Equipment Based on Deep Learning.
    Ding Y; Wu H; Zhou K
    Comput Intell Neurosci; 2022; 2022():3057167. PubMed ID: 35341188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antistroke Network Pharmacological Prediction of Xiaoshuan Tongluo Recipe Based on Drug-Target Interaction Based on Deep Learning.
    Zhou Y
    Comput Math Methods Med; 2022; 2022():6095964. PubMed ID: 35959347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Dropout Method Based on Biological Principles.
    Li H; Weng J; Mao Y; Wang Y; Zhan Y; Cai Q; Gu W
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4267-4276. PubMed ID: 33872159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biologically motivated learning method for deep neural networks using hierarchical competitive learning.
    Shinozaki T
    Neural Netw; 2021 Dec; 144():271-278. PubMed ID: 34520937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Dropout: A Model-Free Methodology for Bayesian Dropout Optimization.
    Xie J; Ma Z; Lei J; Zhang G; Xue JH; Tan ZH; Guo J
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):4605-4625. PubMed ID: 34029187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Inpatient Payments Prior to Lower Extremity Arthroplasty Using Deep Learning: Which Model Architecture Is Best?
    Karnuta JM; Navarro SM; Haeberle HS; Helm JM; Kamath AF; Schaffer JL; Krebs VE; Ramkumar PN
    J Arthroplasty; 2019 Oct; 34(10):2235-2241.e1. PubMed ID: 31230954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted transfer learning to improve performance in small medical physics datasets.
    Romero M; Interian Y; Solberg T; Valdes G
    Med Phys; 2020 Dec; 47(12):6246-6256. PubMed ID: 33007112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning method for image-based subject-specific local SAR assessment.
    Meliadò EF; Raaijmakers AJE; Sbrizzi A; Steensma BR; Maspero M; Savenije MHF; Luijten PR; van den Berg CAT
    Magn Reson Med; 2020 Feb; 83(2):695-711. PubMed ID: 31483521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biased Dropout and Crossmap Dropout: Learning towards effective Dropout regularization in convolutional neural network.
    Poernomo A; Kang DK
    Neural Netw; 2018 Aug; 104():60-67. PubMed ID: 29715684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-augmentation: Generalizing deep networks to unseen classes for few-shot learning.
    Seo JW; Jung HG; Lee SW
    Neural Netw; 2021 Jun; 138():140-149. PubMed ID: 33652370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybridized sine cosine algorithm with convolutional neural networks dropout regularization application.
    Bacanin N; Zivkovic M; Al-Turjman F; Venkatachalam K; Trojovský P; Strumberger I; Bezdan T
    Sci Rep; 2022 Apr; 12(1):6302. PubMed ID: 35440609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards dropout training for convolutional neural networks.
    Wu H; Gu X
    Neural Netw; 2015 Nov; 71():1-10. PubMed ID: 26277608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EDropout: Energy-Based Dropout and Pruning of Deep Neural Networks.
    Salehinejad H; Valaee S
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5279-5292. PubMed ID: 33830931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.