These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32187011)

  • 1. Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation.
    Manoj KM; Ramasamy S; Parashar A; Gideon DA; Soman V; Jacob VD; Pakshirajan K
    Biomol Concepts; 2020 Mar; 11(1):32-56. PubMed ID: 32187011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The murburn precepts for aerobic respiration and redox homeostasis.
    Manoj KM; Bazhin NM
    Prog Biophys Mol Biol; 2021 Dec; 167():104-120. PubMed ID: 34118265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic respiration: proof of concept for the oxygen-centric murburn perspective.
    Manoj KM; Parashar A; David Jacob V; Ramasamy S
    J Biomol Struct Dyn; 2019 Oct; 37(17):4542-4556. PubMed ID: 30488771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Murburn concept: a paradigm shift in cellular metabolism and physiology.
    Manoj KM
    Biomol Concepts; 2020 Jan; 11(1):7-22. PubMed ID: 31961793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical and murburn explanations for acute toxicity of cyanide in aerobic respiration: A personal perspective.
    Manoj KM; Soman V
    Toxicology; 2020 Feb; 432():152369. PubMed ID: 32007488
    [No Abstract]   [Full Text] [Related]  

  • 6. Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic.
    Manoj KM; Soman V; David Jacob V; Parashar A; Gideon DA; Kumar M; Manekkathodi A; Ramasamy S; Pakshirajan K; Bazhin NM
    Arch Biochem Biophys; 2019 Nov; 676():108128. PubMed ID: 31622585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refutation of the cation-centric torsional ATP synthesis model and advocating murburn scheme for mitochondrial oxidative phosphorylation.
    Manoj KM
    Biophys Chem; 2020 Feb; 257():106278. PubMed ID: 31767207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature of the inhibition of horseradish peroxidase and mitochondrial cytochrome c oxidase by cyanyl radical.
    Chen YR; Deterding LJ; Tomer KB; Mason RP
    Biochemistry; 2000 Apr; 39(15):4415-22. PubMed ID: 10757991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2.
    Adak S; Bandyopadhyay U; Bandyopadhyay D; Banerjee RK
    Biochemistry; 1998 Dec; 37(48):16922-33. PubMed ID: 9836585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand.
    Parashar A; Venkatachalam A; Gideon DA; Manoj KM
    Biochem Biophys Res Commun; 2014 Dec; 455(3-4):190-3. PubMed ID: 25449264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13C NMR signal detection of iron-bound cyanide ions in ferric cyanide complexes of heme proteins.
    Fujii H
    J Am Chem Soc; 2002 May; 124(21):5936-7. PubMed ID: 12022815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanide stimulated dissociation of chloride from the catalytic center of oxidized cytochrome c oxidase.
    Fabian M; Skultety L; Brunel C; Palmer G
    Biochemistry; 2001 May; 40(20):6061-9. PubMed ID: 11352742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of ligand transfer in ba3 oxidase from Thermus thermophilus: simultaneous FTIR detection of photolabile heme a3(2+)-CN and transient Cu(B)(2+)-CN complexes.
    Loullis A; Noor MR; Soulimane T; Pinakoulaki E
    J Phys Chem B; 2012 Aug; 116(30):8955-60. PubMed ID: 22765881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoglobin catalyzes ATP-synthesis in human erythrocytes: a murburn model.
    Parashar A; Jacob VD; Gideon DA; Manoj KM
    J Biomol Struct Dyn; 2022; 40(19):8783-8795. PubMed ID: 33998971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared and EPR studies on cyanide binding to the heme-copper binuclear center of cytochrome bo-type ubiquinol oxidase from Escherichia coli. Release of a CuB-cyano complex in the partially reduced state.
    Tsubaki M; Mogi T; Hori H; Sato-Watanabe M; Anraku Y
    J Biol Chem; 1996 Feb; 271(8):4017-22. PubMed ID: 8626734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for ligand discrimination and response initiation in the heme-based oxygen sensor FixL.
    Rodgers KR; Lukat-Rodgers GS; Barron JA
    Biochemistry; 1996 Jul; 35(29):9539-48. PubMed ID: 8755735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo measurements of respiration control by cytochrome c oxidase and in situ analysis of oxidative phosphorylation.
    Villani G; Attardi G
    Methods Cell Biol; 2001; 65():119-31. PubMed ID: 11381589
    [No Abstract]   [Full Text] [Related]  

  • 18. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distal Cu ion protects synthetic heme/Cu analogues of cytochrome oxidase against inhibition by CO and cyanide.
    Collman JP; Boulatov R; Shiryaeva IM; Sunderland CJ
    Angew Chem Int Ed Engl; 2002 Nov; 41(21):4139-42. PubMed ID: 12412108
    [No Abstract]   [Full Text] [Related]  

  • 20. Why do cells need oxygen? Insights from mitochondrial composition and function.
    Manoj KM; Gideon DA; Jaeken L
    Cell Biol Int; 2022 Mar; 46(3):344-358. PubMed ID: 34918410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.