These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32187193)

  • 21. Comparison of exercise performance in patients with chronic severe heart failure versus left ventricular assist devices.
    Mancini D; Goldsmith R; Levin H; Beniaminovitz A; Rose E; Catanese K; Flannery M; Oz M
    Circulation; 1998 Sep; 98(12):1178-83. PubMed ID: 9743508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of functional capacity in patients with end-stage heart failure following implantation of a left ventricular assist device versus heart transplantation: results of the experience with left ventricular assist device with exercise trial.
    Jaski BE; Lingle RJ; Kim J; Branch KR; Goldsmith R; Johnson MR; Lahpor JR; Icenogle TB; Piña I; Adamson R; Favrot LK; Dembitsky WP
    J Heart Lung Transplant; 1999 Nov; 18(11):1031-40. PubMed ID: 10598726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling Right Ventricle Failure After Continuous Flow Left Ventricular Assist Device: A Biventricular Finite-Element and Lumped-Parameter Analysis.
    Scardulla F; Agnese V; Romano G; Di Gesaro G; Sciacca S; Bellavia D; Clemenza F; Pilato M; Pasta S
    Cardiovasc Eng Technol; 2018 Sep; 9(3):427-437. PubMed ID: 29700783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cerebral Blood Flow during Exercise in Heart Failure: Effect of Ventricular Assist Devices.
    Smith KJ; Suarez IM; Scheer A; Chasland LC; Thomas HJ; Correia MA; Dembo LG; Naylor LH; Maiorana AJ; Green DJ
    Med Sci Sports Exerc; 2019 Jul; 51(7):1372-1379. PubMed ID: 30694981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Left Ventricular Decompression During Speed Optimization Ramps in Patients Supported by Continuous-Flow Left Ventricular Assist Devices: Device-Specific Performance Characteristics and Impact on Diagnostic Algorithms.
    Uriel N; Levin AP; Sayer GT; Mody KP; Thomas SS; Adatya S; Yuzefpolskaya M; Garan AR; Breskin A; Takayama H; Colombo PC; Naka Y; Burkhoff D; Jorde UP
    J Card Fail; 2015 Oct; 21(10):785-91. PubMed ID: 26117282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Central and peripheral blood flow during exercise with a continuous-flow left ventricular assist device: constant versus increasing pump speed: a pilot study.
    Brassard P; Jensen AS; Nordsborg N; Gustafsson F; Møller JE; Hassager C; Boesgaard S; Hansen PB; Olsen PS; Sander K; Secher NH; Madsen PL
    Circ Heart Fail; 2011 Sep; 4(5):554-60. PubMed ID: 21765126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surgical correction of aortic valve insufficiency after left ventricular assist device implantation.
    Atkins BZ; Hashmi ZA; Ganapathi AM; Harrison JK; Hughes GC; Rogers JG; Milano CA
    J Thorac Cardiovasc Surg; 2013 Nov; 146(5):1247-52. PubMed ID: 23870154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macrovascular and microvascular function after implantation of left ventricular assist devices in end-stage heart failure: Role of microparticles.
    Sansone R; Stanske B; Keymel S; Schuler D; Horn P; Saeed D; Boeken U; Westenfeld R; Lichtenberg A; Kelm M; Heiss C
    J Heart Lung Transplant; 2015 Jul; 34(7):921-32. PubMed ID: 25980571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Percutaneous transcatheter aortic valve closure successfully treats left ventricular assist device-associated aortic insufficiency and improves cardiac hemodynamics.
    Parikh KS; Mehrotra AK; Russo MJ; Lang RM; Anderson A; Jeevanandam V; Freed BH; Paul JD; Karol J; Nathan S; Shah AP
    JACC Cardiovasc Interv; 2013 Jan; 6(1):84-9. PubMed ID: 23347865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Physiological Rationale for Incorporating Pulsatility in Continuous-Flow Left Ventricular Assist Devices.
    Grosman-Rimon L; Billia F; Kobulnik J; Pollock Bar-Ziv S; Cherney DZ; Rao V
    Cardiol Rev; 2018; 26(6):294-301. PubMed ID: 29608506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Outcomes after implantation of partial-support left ventricular assist devices in inotropic-dependent patients: Do we still need full-support assist devices?
    Sabashnikov A; Popov AF; Bowles CT; Mohite PN; Weymann A; Hards R; Hedger M; Wittwer T; Wippermann J; Wahlers T; Schoendube FA; Simon AR
    J Thorac Cardiovasc Surg; 2014 Sep; 148(3):1115-21; discussion 1021-2. PubMed ID: 25129605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exercise in heart failure patients supported with a left ventricular assist device.
    Jung MH; Gustafsson F
    J Heart Lung Transplant; 2015 Apr; 34(4):489-96. PubMed ID: 25577562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The clinical and cost-effectiveness of left ventricular assist devices for end-stage heart failure: a systematic review and economic evaluation.
    Clegg AJ; Scott DA; Loveman E; Colquitt J; Hutchinson J; Royle P; Bryant J
    Health Technol Assess; 2005 Nov; 9(45):1-132, iii-iv. PubMed ID: 16303098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential exercise performance on ventricular assist device support.
    Simon MA; Kormos RL; Gorcsan J; Dohi K; Winowich S; Stanford E; Carozza L; Murali S
    J Heart Lung Transplant; 2005 Oct; 24(10):1506-12. PubMed ID: 16210122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of increasing pump speed during exercise on peak oxygen uptake in heart failure patients supported with a continuous-flow left ventricular assist device. A double-blind randomized study.
    Jung MH; Hansen PB; Sander K; Olsen PS; Rossing K; Boesgaard S; Russell SD; Gustafsson F
    Eur J Heart Fail; 2014 Apr; 16(4):403-8. PubMed ID: 24464845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effective ventricular unloading by left ventricular assist device varies with stage of heart failure: cardiac simulator study.
    Jhun CS; Reibson JD; Cysyk JP
    ASAIO J; 2011; 57(5):407-13. PubMed ID: 21817896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients: The ROADMAP Study 2-Year Results.
    Starling RC; Estep JD; Horstmanshof DA; Milano CA; Stehlik J; Shah KB; Bruckner BA; Lee S; Long JW; Selzman CH; Kasirajan V; Haas DC; Boyle AJ; Chuang J; Farrar DJ; Rogers JG;
    JACC Heart Fail; 2017 Jul; 5(7):518-527. PubMed ID: 28396040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exercise physiology, testing, and training in patients supported by a left ventricular assist device.
    Loyaga-Rendon RY; Plaisance EP; Arena R; Shah K
    J Heart Lung Transplant; 2015 Aug; 34(8):1005-16. PubMed ID: 25682553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Delayed reversal of impaired metabolic vasodilation in patients with end-stage heart failure during long-term circulatory support with a left ventricular assist device.
    Khan T; Levin HR; Oz MC; Katz SD
    J Heart Lung Transplant; 1997 Apr; 16(4):449-53. PubMed ID: 9154956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An advanced physiological controller design for a left ventricular assist device to prevent left ventricular collapse.
    Wu Y; Allaire P; Tao G; Wood H; Olsen D; Tribble C
    Artif Organs; 2003 Oct; 27(10):926-30. PubMed ID: 14616537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.