These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 32187208)

  • 1. Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels.
    Kwon J; Shin J; Im CH
    PLoS One; 2020; 15(3):e0230491. PubMed ID: 32187208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.
    Shin J; Kwon J; Im CH
    Front Neuroinform; 2018; 12():5. PubMed ID: 29527160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.
    Shin J; Kim DW; Müller KR; Hwang HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation.
    Hasan MAH; Khan MU; Mishra D
    Biomed Res Int; 2020; 2020():1838140. PubMed ID: 32923476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.
    Buccino AP; Keles HO; Omurtag A
    PLoS One; 2016; 11(1):e0146610. PubMed ID: 26730580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Graph-Based Nonlinear Dynamic Characterization of Motor Imagery Toward an Enhanced Hybrid BCI.
    Hosni SMI; Borgheai SB; McLinden J; Zhu S; Huang X; Ostadabbas S; Shahriari Y
    Neuroinformatics; 2022 Oct; 20(4):1169-1189. PubMed ID: 35907174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eyes-closed hybrid brain-computer interface employing frontal brain activation.
    Shin J; Müller KR; Hwang HJ
    PLoS One; 2018; 13(5):e0196359. PubMed ID: 29734383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FGANet: fNIRS-Guided Attention Network for Hybrid EEG-fNIRS Brain-Computer Interfaces.
    Kwak Y; Song WJ; Kim SE
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():329-339. PubMed ID: 35130163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating a four-class motor-imagery-based optical brain-computer interface.
    Batula AM; Ayaz H; Kim YE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2000-3. PubMed ID: 25570375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface.
    Zhang S; Zheng Y; Wang D; Wang L; Ma J; Zhang J; Xu W; Li D; Zhang D
    Neurosci Lett; 2017 Aug; 655():35-40. PubMed ID: 28663052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Performance of a Hybrid EEG-fNIRS System Using Channel Selection and Early Temporal Features.
    Li R; Potter T; Huang W; Zhang Y
    Front Hum Neurosci; 2017; 11():462. PubMed ID: 28966581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI.
    Hong KS; Naseer N; Kim YH
    Neurosci Lett; 2015 Feb; 587():87-92. PubMed ID: 25529197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound.
    Khalaf A; Sejdic E; Akcakaya M
    J Neurosci Methods; 2019 Feb; 313():44-53. PubMed ID: 30590086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review.
    Khan H; Naseer N; Yazidi A; Eide PK; Hassan HW; Mirtaheri P
    Front Hum Neurosci; 2020; 14():613254. PubMed ID: 33568979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1674-1682. PubMed ID: 28328506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards optimal visual presentation design for hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Sejdic E; Akcakaya M
    J Neural Eng; 2018 Oct; 15(5):056019. PubMed ID: 30021931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossing time windows optimization based on mutual information for hybrid BCI.
    Meng M; Dai L; She Q; Ma Y; Kong W
    Math Biosci Eng; 2021 Sep; 18(6):7919-7935. PubMed ID: 34814281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.