These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3218725)

  • 1. Time-resolved detection of energy transfer: theory and application to immunoassays.
    Morrison LE
    Anal Biochem; 1988 Oct; 174(1):101-20. PubMed ID: 3218725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous model immunoassay of thyroxine by phase-modulation fluorescence spectroscopy.
    Ozinskas AJ; Malak H; Joshi J; Szmacinski H; Britz J; Thompson RB; Koen PA; Lakowicz JR
    Anal Biochem; 1993 Sep; 213(2):264-70. PubMed ID: 8238900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single photon radioluminescence. I. Theory and spectroscopic properties.
    Bicknese S; Shahrokh Z; Shohet SB; Verkman AS
    Biophys J; 1992 Nov; 63(5):1256-66. PubMed ID: 1477277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New donor-acceptor pair for fluorescent immunoassays by energy transfer.
    Schobel U; Egelhaaf HJ; Brecht A; Oelkrug D; Gauglitz G
    Bioconjug Chem; 1999; 10(6):1107-14. PubMed ID: 10563781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Singlet-singlet energy transfer in self-assembled systems of the cationic poly{9,9-bis[6-N,N,N-trimethylammonium)hexyl]fluorene-co-1,4-phenylene} with oppositely charged porphyrins.
    Pinto SM; Burrows HD; Pereira MM; Fonseca SM; Dias FB; Mallavia R; Tapia MJ
    J Phys Chem B; 2009 Dec; 113(50):16093-100. PubMed ID: 19925000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terbium and rhodamine as labels in a homogeneous time-resolved fluorometric energy transfer assay of the beta subunit of human chorionic gonadotropin in serum.
    Blomberg K; Hurskainen P; Hemmilä I
    Clin Chem; 1999 Jun; 45(6 Pt 1):855-61. PubMed ID: 10351995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem dye acceptor used to enhance upconversion fluorescence resonance energy transfer in homogeneous assays.
    Rantanen T; Päkkilä H; Jämsen L; Kuningas K; Ukonaho T; Lövgren T; Soukka T
    Anal Chem; 2007 Aug; 79(16):6312-8. PubMed ID: 17628044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel FRET immunosensor technique.
    Lichlyter DJ; Grant SA; Soykan O
    Biosens Bioelectron; 2003 Nov; 19(3):219-26. PubMed ID: 14611757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Picosecond time-resolved energy transfer in Porphyridium cruentum. Part II. In the isolated light harvesting complex (phycobilisomes).
    Searle GF; Barber J; Porter G; Tredwell CJ
    Biochim Biophys Acta; 1978 Feb; 501(2):246-56. PubMed ID: 620015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving lanthanide-based resonance energy transfer detection by increasing donor-acceptor distances.
    Vogel KW; Vedvik KL
    J Biomol Screen; 2006 Jun; 11(4):439-43. PubMed ID: 16751339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent tandem phycobiliprotein conjugates. Emission wavelength shifting by energy transfer.
    Glazer AN; Stryer L
    Biophys J; 1983 Sep; 43(3):383-6. PubMed ID: 6414547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational transitions in the calcium adenosinetriphosphatase studied by time-resolved fluorescence resonance energy transfer.
    Birmachu W; Nisswandt FL; Thomas DD
    Biochemistry; 1989 May; 28(9):3940-7. PubMed ID: 2526653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.
    Osad'ko IS; Shchukina AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061907. PubMed ID: 23005127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular electronic excitation energy transfer in donor/acceptor dyads studied by time and frequency resolved single molecule spectroscopy.
    Hinze G; Métivier R; Nolde F; Müllen K; Basché T
    J Chem Phys; 2008 Mar; 128(12):124516. PubMed ID: 18376952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single laser three color immunofluorescence staining procedures based on energy transfer between phycoerythrin and cyanine 5.
    Lansdorp PM; Smith C; Safford M; Terstappen LW; Thomas TE
    Cytometry; 1991; 12(8):723-30. PubMed ID: 1794253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein.
    Ma YZ; Miller RA; Fleming GR; Francis MB
    J Phys Chem B; 2008 Jun; 112(22):6887-92. PubMed ID: 18471010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody engineering-driven controllable chemiluminescence resonance energy transfer for immunoassay with tunable dynamic range.
    Dou L; Pan Y; Ma M; Zhang S; Shen J; Wang Z; Yu W
    Anal Chim Acta; 2021 Apr; 1152():338231. PubMed ID: 33648650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer.
    Ozaki H; McLaughlin LW
    Nucleic Acids Res; 1992 Oct; 20(19):5205-14. PubMed ID: 1408835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.