These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32187433)

  • 21. Characterization of the binding of Photobacterium phosphoreum P-flavin by Vibrio harveyi Luciferase.
    Wei CJ; Lei B; Tu SC
    Arch Biochem Biophys; 2001 Dec; 396(2):199-206. PubMed ID: 11747297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism and substrate specificity of the flavin reductase ActVB from Streptomyces coelicolor.
    Filisetti L; Fontecave M; Niviere V
    J Biol Chem; 2003 Jan; 278(1):296-303. PubMed ID: 12417584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectral detection of an intermediate preceding the excited state in the bacterial luciferase reaction.
    Macheroux P; Ghisla S; Hastings JW
    Biochemistry; 1993 Dec; 32(51):14183-6. PubMed ID: 8260504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flavin specificity and subunit interaction of Vibrio fischeri general NAD(P)H-flavin oxidoreductase FRG/FRase I.
    Tang CK; Jeffers CE; Nichols JC; Tu SC
    Arch Biochem Biophys; 2001 Aug; 392(1):110-6. PubMed ID: 11469801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduced flavin: donor and acceptor enzymes and mechanisms of channeling.
    Tu SC
    Antioxid Redox Signal; 2001 Oct; 3(5):881-97. PubMed ID: 11761334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the mechanisms of the biological intermolecular transfer of reduced flavin.
    Tu SC; Lei B; Liu M; Tang CK; Jeffers C
    J Nutr; 2000 Feb; 130(2S Suppl):331S-332S. PubMed ID: 10721898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter.
    Close D; Xu T; Smartt A; Rogers A; Crossley R; Price S; Ripp S; Sayler G
    Sensors (Basel); 2012; 12(1):732-52. PubMed ID: 22368493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity and stability of the luciferase--flavin intermediate.
    Becvar JE; Tu SC; Hastings JW
    Biochemistry; 1978 May; 17(9):1807-12. PubMed ID: 306832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steady-state bioluminescence of bacterial luciferase using electrochemical regeneration of flavin substrate and its application to inhibitory analysis.
    Yamasaki S; Nakashima S; Yamada S; Takehara K
    Bioelectrochemistry; 2009 Apr; 75(1):67-70. PubMed ID: 19162563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA detection through signal amplification by using NADH: flavin oxidoreductase and oligonucleotide-flavin conjugates as cofactors.
    Simon P; Dueymes C; Fontecave M; Décout JL
    Angew Chem Int Ed Engl; 2005 Apr; 44(18):2764-2767. PubMed ID: 15772944
    [No Abstract]   [Full Text] [Related]  

  • 31. Identification of the gene encoding the major NAD(P)H-flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744.
    Zenno S; Saigo K; Kanoh H; Inouye S
    J Bacteriol; 1994 Jun; 176(12):3536-43. PubMed ID: 8206830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme.
    Lei B; Liu M; Huang S; Tu SC
    J Bacteriol; 1994 Jun; 176(12):3552-8. PubMed ID: 8206832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity coupling and complex formation between bacterial luciferase and flavin reductases.
    Tu SC
    Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of the genes encoding NAD(P)H-flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis.
    Zenno S; Saigo K
    J Bacteriol; 1994 Jun; 176(12):3544-51. PubMed ID: 8206831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line.
    Close DM; Patterson SS; Ripp S; Baek SJ; Sanseverino J; Sayler GS
    PLoS One; 2010 Aug; 5(8):e12441. PubMed ID: 20805991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High sensitivity and low-cost flavin luciferase (FLUX
    Phonbuppha J; Tinikul R; Ohmiya Y; Chaiyen P
    J Biol Chem; 2023 May; 299(5):104639. PubMed ID: 36965614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial bioluminescence: organization, regulation, and application of the lux genes.
    Meighen EA
    FASEB J; 1993 Aug; 7(11):1016-22. PubMed ID: 8370470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strongly enhanced bacterial bioluminescence with the
    Gregor C; Gwosch KC; Sahl SJ; Hell SW
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):962-967. PubMed ID: 29339494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of genes encoding the luciferase from Photobacterium leiognathi in Escherichia coli Rosetta (DE3) and its application in NADH detection.
    Xuan G; Xiao Q; Wang J; Lin H; Pavase T
    Luminescence; 2018 Sep; 33(6):1010-1018. PubMed ID: 29920921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.