These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32187650)

  • 41. Derived loss of signal complexity and plasticity in a genus of weakly electric fish.
    Saenz DE; Gu T; Ban Y; Winemiller KO; Markham MR
    J Exp Biol; 2021 Jun; 224(12):. PubMed ID: 34109419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus.
    Keller CH; Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1991 Oct; 169(4):441-50. PubMed ID: 1685751
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differentiation of morphology, genetics and electric signals in a region of sympatry between sister species of African electric fish (Mormyridae).
    Lavoué S; Sullivan JP; Arnegard ME; Hopkins CD
    J Evol Biol; 2008 Jul; 21(4):1030-45. PubMed ID: 18513358
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of conductivity changes on the stability of electric signal waveforms in dwarf stonebashers (Mormyridae; Pollimyrus castelnaui, P. marianne).
    Baier B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Oct; 194(10):915-9. PubMed ID: 18726600
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrocyte physiology: 50 years later.
    Markham MR
    J Exp Biol; 2013 Jul; 216(Pt 13):2451-8. PubMed ID: 23761470
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new genome assembly of an African weakly electric fish (Campylomormyrus compressirostris, Mormyridae) indicates rapid gene family evolution in Osteoglossomorpha.
    Cheng F; Dennis AB; Osuoha JI; Canitz J; Kirschbaum F; Tiedemann R
    BMC Genomics; 2023 Mar; 24(1):129. PubMed ID: 36941548
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish.
    Kolodziejski JA; Nelson BS; Smith GT
    J Neurobiol; 2005 Feb; 62(3):299-315. PubMed ID: 15515000
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The third form electric organ discharge of electric eels.
    Xu J; Cui X; Zhang H
    Sci Rep; 2021 Mar; 11(1):6193. PubMed ID: 33737620
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolution and hormonal regulation of sex differences in the electrocommunication behavior of ghost knifefishes (Apteronotidae).
    Smith GT
    J Exp Biol; 2013 Jul; 216(Pt 13):2421-33. PubMed ID: 23761467
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sound production to electric discharge: sonic muscle evolution in progress in Synodontis spp. catfishes (Mochokidae).
    Boyle KS; Colleye O; Parmentier E
    Proc Biol Sci; 2014 Sep; 281(1791):20141197. PubMed ID: 25080341
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electroreceptor model of weakly electric fish Gnathonemus petersii: II. Cellular origin of inverse waveform tuning.
    Shuai J; Kashimori Y; Hoshino O; Kambara T; Emde G
    Biophys J; 1999 Jun; 76(6):3012-25. PubMed ID: 10354427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of normoxia exposure on hypoxia tolerance and sensory sampling in a swamp-dwelling mormyrid fish.
    Clarke SB; Chapman LJ; Krahe R
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Feb; 240():110586. PubMed ID: 31648062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-unit activity patterns in nuclei that control the electromotor command nucleus during spontaneous electric signal production in the mormyrid Brienomyrus brachyistius.
    Carlson BA
    J Neurosci; 2003 Nov; 23(31):10128-36. PubMed ID: 14602829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Behavioral actions of androgens and androgen receptor expression in the electrocommunication system of an electric fish, Eigenmannia virescens.
    Dunlap KD; Zakon HH
    Horm Behav; 1998 Aug; 34(1):30-8. PubMed ID: 9735226
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural substrates for species recognition in the time-coding electrosensory pathway of mormyrid electric fish.
    Friedman MA; Hopkins CD
    J Neurosci; 1998 Feb; 18(3):1171-85. PubMed ID: 9437037
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny.
    Smith AR; Proffitt MR; Ho WW; Mullaney CB; Maldonado-Ocampo JA; Lovejoy NR; Alves-Gomes JA; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):302-313. PubMed ID: 27769924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chronic androgen treatment increases action potential duration in the electric organ of Sternopygus.
    Mills A; Zakon HH
    J Neurosci; 1991 Aug; 11(8):2349-61. PubMed ID: 1869919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Androgens alter electric organ discharge pulse duration despite stability in electric organ discharge frequency.
    Few WP; Zakon HH
    Horm Behav; 2001 Nov; 40(3):434-42. PubMed ID: 11673917
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Female choice by electric pulse duration: attractiveness of the males' communication signal assessed by female bulldog fish, Marcusenius pongolensis (Mormyridae, Teleostei).
    Machnik P; Kramer B
    J Exp Biol; 2008 Jun; 211(Pt 12):1969-77. PubMed ID: 18515728
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hormone-induced and maturational changes in electric organ discharges and electroreceptor tuning in the weakly electric fish Apteronotus.
    Meyer JH; Leong M; Keller CH
    J Comp Physiol A; 1987 Mar; 160(3):385-94. PubMed ID: 3572854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.