These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32187824)

  • 1. Double-Cubane [8Fe9S] Clusters: A Novel Nitrogenase-Related Cofactor in Biology.
    Jeoung JH; Martins BM; Dobbek H
    Chembiochem; 2020 Jun; 21(12):1710-1716. PubMed ID: 32187824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for coupled ATP-driven electron transfer in the double-cubane cluster protein.
    Jeoung JH; Nicklisch S; Dobbek H
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2203576119. PubMed ID: 35905315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-dependent substrate reduction at an [Fe
    Jeoung JH; Dobbek H
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2994-2999. PubMed ID: 29507223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand metathesis as rational strategy for the synthesis of cubane-type heteroleptic iron-sulfur clusters relevant to the FeMo cofactor.
    Xu G; Wang Z; Ling R; Zhou J; Chen XD; Holm RH
    Proc Natl Acad Sci U S A; 2018 May; 115(20):5089-5092. PubMed ID: 29654147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides.
    Ryle MJ; Seefeldt LC
    Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-dependent complex formation by an ATP-dependent activator of the corrinoid/iron-sulfur protein.
    Hennig SE; Jeoung JH; Goetzl S; Dobbek H
    Proc Natl Acad Sci U S A; 2012 Apr; 109(14):5235-40. PubMed ID: 22431597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii.
    Georgiadis MM; Komiya H; Chakrabarti P; Woo D; Kornuc JJ; Rees DC
    Science; 1992 Sep; 257(5077):1653-9. PubMed ID: 1529353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy Transduction in Nitrogenase.
    Seefeldt LC; Hoffman BM; Peters JW; Raugei S; Beratan DN; Antony E; Dean DR
    Acc Chem Res; 2018 Sep; 51(9):2179-2186. PubMed ID: 30095253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radical AdoMet enzymes in complex metal cluster biosynthesis.
    Duffus BR; Hamilton TL; Shepard EM; Boyd ES; Peters JW; Broderick JB
    Biochim Biophys Acta; 2012 Nov; 1824(11):1254-63. PubMed ID: 22269887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer in nitrogenase catalysis.
    Seefeldt LC; Hoffman BM; Dean DR
    Curr Opin Chem Biol; 2012 Apr; 16(1-2):19-25. PubMed ID: 22397885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural models for the metal centers in the nitrogenase molybdenum-iron protein.
    Kim J; Rees DC
    Science; 1992 Sep; 257(5077):1677-82. PubMed ID: 1529354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogenase Bioelectrochemistry for Synthesis Applications.
    Milton RD; Minteer SD
    Acc Chem Res; 2019 Dec; 52(12):3351-3360. PubMed ID: 31800207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vanadium-iron-sulfur clusters containing the cubane-type [VFe3S4] core unit: synthesis of a cluster with the topology of the PN cluster of nitrogenase.
    Zuo JL; Zhou HC; Holm RH
    Inorg Chem; 2003 Jul; 42(15):4624-31. PubMed ID: 12870953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating the midpoint potential of the [4Fe-4S] cluster of the nitrogenase Fe protein.
    Jang SB; Seefeldt LC; Peters JW
    Biochemistry; 2000 Feb; 39(4):641-8. PubMed ID: 10651628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe/S and Fe/Mo/S clusters as speculative models for the metal centers in uncommon Fe/S proteins and the Fe/Mo protein of the nitrogenases.
    Coucouvanis D
    Adv Inorg Biochem; 1994; 9():75-122. PubMed ID: 8140951
    [No Abstract]   [Full Text] [Related]  

  • 18. ATP- and iron-protein-independent activation of nitrogenase catalysis by light.
    Roth LE; Nguyen JC; Tezcan FA
    J Am Chem Soc; 2010 Oct; 132(39):13672-4. PubMed ID: 20843032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogenase Cofactor Assembly: An Elemental Inventory.
    Sickerman NS; Ribbe MW; Hu Y
    Acc Chem Res; 2017 Nov; 50(11):2834-2841. PubMed ID: 29064664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction and characterization of a heterodimeric iron protein: defining roles for adenosine triphosphate in nitrogenase catalysis.
    Chan JM; Wu W; Dean DR; Seefeldt LC
    Biochemistry; 2000 Jun; 39(24):7221-8. PubMed ID: 10852721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.