BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32187880)

  • 1. The Food Matrix and the Gastrointestinal Fluids Alter the Features of Silver Nanoparticles.
    Laloux L; Kastrati D; Cambier S; Gutleb AC; Schneider YJ
    Small; 2020 May; 16(21):e1907687. PubMed ID: 32187880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of
    Abdelkhaliq A; van der Zande M; Undas AK; Peters RJB; Bouwmeester H
    Nanotoxicology; 2020 Feb; 14(1):111-126. PubMed ID: 31648587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi
    Cueva C; Gil-Sánchez I; Tamargo A; Miralles B; Crespo J; Bartolomé B; Moreno-Arribas MV
    Food Chem Toxicol; 2019 Oct; 132():110657. PubMed ID: 31276746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous characterisation of silver nanoparticles and determination of dissolved silver in chicken meat subjected to in vitro human gastrointestinal digestion using single particle inductively coupled plasma mass spectrometry.
    Ramos K; Ramos L; Gómez-Gómez MM
    Food Chem; 2017 Apr; 221():822-828. PubMed ID: 27979280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model.
    Walczak AP; Fokkink R; Peters R; Tromp P; Herrera Rivera ZE; Rietjens IM; Hendriksen PJ; Bouwmeester H
    Nanotoxicology; 2013 Nov; 7(7):1198-210. PubMed ID: 22931191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behaviour of silver nanoparticles in simulated saliva and gastrointestinal fluids.
    Pinďáková L; Kašpárková V; Kejlová K; Dvořáková M; Krsek D; Jírová D; Kašparová L
    Int J Pharm; 2017 Jul; 527(1-2):12-20. PubMed ID: 28506800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation and Speciation Analysis of Silver Nanoparticles of Dietary Supplement in Simulated Human Gastrointestinal Tract.
    Wu W; Zhang R; McClements DJ; Chefetz B; Polubesova T; Xing B
    Environ Sci Technol; 2018 Aug; 52(15):8792-8800. PubMed ID: 29969018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties.
    Dang F; Jiang Y; Li M; Zhong H; Peijnenburg WGM; Shi W; Zhou D
    Environ Pollut; 2018 Dec; 243(Pt A):364-373. PubMed ID: 30199811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green synthesis of biogenic silver nanoparticles using Solanum tuberosum extract and their interaction with human serum albumin: Evidence of "corona" formation through a multi-spectroscopic and molecular docking analysis.
    Ali MS; Altaf M; Al-Lohedan HA
    J Photochem Photobiol B; 2017 Aug; 173():108-119. PubMed ID: 28570906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague-Dawley rats.
    Orr SE; Gokulan K; Boudreau M; Cerniglia CE; Khare S
    J Nanobiotechnology; 2019 May; 17(1):63. PubMed ID: 31084603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles.
    Fernando I; Zhou Y
    Chemosphere; 2019 Feb; 216():297-305. PubMed ID: 30384298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle coatings but not silver ions mediate genotoxicity of ingested silver nanoparticles in a mouse model.
    Nallanthighal S; Chan C; Bharali DJ; Mousa SA; Vásquez E; Reliene R
    NanoImpact; 2017 Jan; 5():92-100. PubMed ID: 28944309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract.
    Nasiriboroumand M; Montazer M; Barani H
    J Photochem Photobiol B; 2018 Feb; 179():98-104. PubMed ID: 29351880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant Acetylcholinesterase purification and its interaction with silver nanoparticle.
    Mirzajani F; Motevalli SM; Jabbari S; Ranaei Siadat SO; Sefidbakht Y
    Protein Expr Purif; 2017 Aug; 136():58-65. PubMed ID: 28554568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of a standardized food matrix and gastrointestinal fluids on the physicochemical properties of titanium dioxide nanoparticles.
    Li Y; Jiang K; Cao H; Yuan M; Xu F
    RSC Adv; 2021 Mar; 11(19):11568-11582. PubMed ID: 35423614
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Dudefoi W; Rabesona H; Rivard C; Mercier-Bonin M; Humbert B; Terrisse H; Ropers MH
    Food Funct; 2021 Jul; 12(13):5975-5988. PubMed ID: 34032251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Solution Chemistry and Soft Protein Coronas on the Interactions of Silver Nanoparticles with Model Biological Membranes.
    Wang Q; Lim M; Liu X; Wang Z; Chen KL
    Environ Sci Technol; 2016 Mar; 50(5):2301-9. PubMed ID: 26812241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization and stability study of green synthesized starch stabilized silver nanoparticles loaded with isoorientin.
    Wang X; Yuan L; Deng H; Zhang Z
    Food Chem; 2021 Feb; 338():127807. PubMed ID: 32818865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles.
    Daima HK; Selvakannan PR; Kandjani AE; Shukla R; Bhargava SK; Bansal V
    Nanoscale; 2014 Jan; 6(2):758-65. PubMed ID: 24165753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation, Absorption and Toxicological Mechanisms of Silver Nanoparticles in the Gastrointestinal Tract Following Oral Exposure.
    Qi M; Wang X; Chen J; Liu Y; Liu Y; Jia J; Li L; Yue T; Gao L; Yan B; Zhao B; Xu M
    ACS Nano; 2023 May; 17(10):8851-8865. PubMed ID: 37145866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.