These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32187988)

  • 41. Synergistic Effects of Hybrid Carbonaceous Fillers of Carbon Fibers and Reduced Graphene Oxides on Enhanced Heat-Dissipation Capability of Polymer Composites.
    Lee YS; Yu J; Shim SE; Yang CM
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32295199
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Laser-Guided, Self-Confined Graphitization for High-Conductivity Embedded Electronics.
    Yu H; Bian J; Chen F; Li K; Huang Y
    Research (Wash D C); 2024; 7():0305. PubMed ID: 38628354
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal properties of graphene and nanostructured carbon materials.
    Balandin AA
    Nat Mater; 2011 Jul; 10(8):569-81. PubMed ID: 21778997
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exceptional high thermal conductivity of inter-connected annular graphite structures.
    Zhuang S; Zhang F; Liu Y; Lu C
    Phys Chem Chem Phys; 2019 Dec; 21(45):25495-25505. PubMed ID: 31714563
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flyweight 3D Graphene Scaffolds with Microinterface Barrier-Derived Tunable Thermal Insulation and Flame Retardancy.
    Zhang Q; Hao M; Xu X; Xiong G; Li H; Fisher TS
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14232-14241. PubMed ID: 28378997
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrical Measurements of Thermally Reduced Graphene Oxide Powders under Pressure.
    Park H; Lim S; Nguyen DD; Suk JW
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31569757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Atomic dopants involved in the structural evolution of thermally graphitized graphene.
    Yoon Y; Seo S; Kim G; Lee H
    Chemistry; 2012 Oct; 18(42):13466-72. PubMed ID: 22976511
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thickness-Independent Energy Dissipation in Graphene Electronics.
    Wei Y; Zhang R; Zhang Y; Zheng X; Cai W; Ge Q; Novoselov KS; Xu Z; Jiang T; Deng C; Zhang X; Qin S
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17706-17712. PubMed ID: 32223146
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unusually low and density-insensitive thermal conductivity of three-dimensional gyroid graphene.
    Jung GS; Yeo J; Tian Z; Qin Z; Buehler MJ
    Nanoscale; 2017 Sep; 9(36):13477-13484. PubMed ID: 28861576
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced Thermal Conductivity of Graphene Nanoplatelet-Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation.
    Hamidinejad SM; Chu RKM; Zhao B; Park CB; Filleter T
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1225-1236. PubMed ID: 29226667
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synergetic Improvement in Thermal Conductivity and Flame Retardancy of Epoxy/Silver Nanowires Composites by Incorporating "Branch-Like" Flame-Retardant Functionalized Graphene.
    Feng Y; Li X; Zhao X; Ye Y; Zhou X; Liu H; Liu C; Xie X
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21628-21641. PubMed ID: 29856592
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.
    Khadem MH; Wemhoff AP
    J Chem Phys; 2013 Feb; 138(8):084708. PubMed ID: 23464173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Scalable Approach to Construct Self-Assembled Graphene-Based Films with An Ordered Structure for Thermal Management.
    Zeng H; Wu J; Ma Y; Ye Y; Liu J; Li X; Wang Y; Liao Y; Luo X; Xie X; Mai YW
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41690-41698. PubMed ID: 30354061
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graphene-based composite materials.
    Stankovich S; Dikin DA; Dommett GH; Kohlhaas KM; Zimney EJ; Stach EA; Piner RD; Nguyen ST; Ruoff RS
    Nature; 2006 Jul; 442(7100):282-6. PubMed ID: 16855586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improvement of the Heat-Dissipating Performance of Powder Coating with Graphene.
    Kung F; Yang MC
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32531901
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication and thermal properties of tetradecanol/graphene aerogel form-stable composite phase change materials.
    Mu B; Li M
    Sci Rep; 2018 Jun; 8(1):8878. PubMed ID: 29891967
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal conductance bottleneck of a three dimensional graphene-CNT hybrid structure: a molecular dynamics simulation.
    Yu Z; Feng Y; Feng D; Zhang X
    Phys Chem Chem Phys; 2019 Dec; 22(1):337-343. PubMed ID: 31815266
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube.
    Jung H; Yu S; Bae NS; Cho SM; Kim RH; Cho SH; Hwang I; Jeong B; Ryu JS; Hwang J; Hong SM; Koo CM; Park C
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15256-62. PubMed ID: 26120871
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of Nitrogen-Doped Graphene on Copper Nanowires for Efficient Thermal Conductivity and Stability by Using Conventional Thermal Chemical Vapor Deposition.
    Park M; Ahn SK; Hwang S; Park S; Kim S; Jeon M
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31284632
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrochemical depositing rGO-Ti-rGO heterogeneous substrates with higher thermal conductivity and heat transfer performance compared to pure Ti.
    Wang J; Wang H; Zhang W; Yang X; Wen G; Wang Y; Zhou W
    Nanotechnology; 2017 Feb; 28(7):075703. PubMed ID: 28080999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.