These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32187988)

  • 61. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube.
    Jung H; Yu S; Bae NS; Cho SM; Kim RH; Cho SH; Hwang I; Jeong B; Ryu JS; Hwang J; Hong SM; Koo CM; Park C
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15256-62. PubMed ID: 26120871
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synthesis of Nitrogen-Doped Graphene on Copper Nanowires for Efficient Thermal Conductivity and Stability by Using Conventional Thermal Chemical Vapor Deposition.
    Park M; Ahn SK; Hwang S; Park S; Kim S; Jeon M
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31284632
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tailoring the Thermal and Mechanical Properties of Graphene Film by Structural Engineering.
    Wang N; Samani MK; Li H; Dong L; Zhang Z; Su P; Chen S; Chen J; Huang S; Yuan G; Xu X; Li B; Leifer K; Ye L; Liu J
    Small; 2018 Jun; ():e1801346. PubMed ID: 29926528
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrochemical depositing rGO-Ti-rGO heterogeneous substrates with higher thermal conductivity and heat transfer performance compared to pure Ti.
    Wang J; Wang H; Zhang W; Yang X; Wen G; Wang Y; Zhou W
    Nanotechnology; 2017 Feb; 28(7):075703. PubMed ID: 28080999
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites.
    Chang SW; Nair AK; Buehler MJ
    J Phys Condens Matter; 2012 Jun; 24(24):245301. PubMed ID: 22611110
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Thermal Transport in Soft PAAm Hydrogels.
    Tang N; Peng Z; Guo R; An M; Chen X; Li X; Yang N; Zang J
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965991
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Enhanced Reduction of Graphene Oxide on Recyclable Cu Foils to Fabricate Graphene Films with Superior Thermal Conductivity.
    Huang SY; Zhao B; Zhang K; Yuen MM; Xu JB; Fu XZ; Sun R; Wong CP
    Sci Rep; 2015 Sep; 5():14260. PubMed ID: 26404674
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of thermal dissipation by adding graphene materials to surface coating of LED lighting module.
    Kim S; Jeong JY; Han SH; Kim JH; Kwon KT; Hwang MK; Kim IT; Cho GS
    J Nanosci Nanotechnol; 2013 May; 13(5):3554-8. PubMed ID: 23858901
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Graphene-vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes.
    Ding J; Fu S; Zhang R; Boon E; Lee W; Fisher FT; Yang EH
    Nanotechnology; 2017 Nov; 28(46):465302. PubMed ID: 29064823
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Thermal Conductivity Characterization of Thermal Grease Containing Copper Nanopowder.
    Kang H; Kim H; An J; Choi S; Yang J; Jeong H; Huh S
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32316526
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Three-Dimensional Graphene Foam-Filled Elastomer Composites with High Thermal and Mechanical Properties.
    Fang H; Zhao Y; Zhang Y; Ren Y; Bai SL
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26447-26459. PubMed ID: 28730803
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications.
    Wan D; Yang C; Lin T; Tang Y; Zhou M; Zhong Y; Huang F; Lin J
    ACS Nano; 2012 Oct; 6(10):9068-78. PubMed ID: 22984901
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Construction of 3D Skeleton for Polymer Composites Achieving a High Thermal Conductivity.
    Yao Y; Sun J; Zeng X; Sun R; Xu JB; Wong CP
    Small; 2018 Mar; 14(13):e1704044. PubMed ID: 29392850
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chemical Approach to Ultrastiff, Strong, and Environmentally Stable Graphene Films.
    Wu M; Chen J; Wen Y; Chen H; Li Y; Li C; Shi G
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5812-5818. PubMed ID: 29373015
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Facile Synthesis of Graphene Sponge from Graphene Oxide for Efficient Dye-Sensitized H2 Evolution.
    Zhang W; Li Y; Peng S
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15187-95. PubMed ID: 27244655
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Thermal stability of L-ascorbic acid and ascorbic acid oxidase in broccoli (Brassica oleracea var. italica).
    Munyaka AW; Makule EE; Oey I; Van Loey A; Hendrickx M
    J Food Sci; 2010 May; 75(4):C336-40. PubMed ID: 20546391
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Efficient heat dissipation of photonic crystal microcavity by monolayer graphene.
    Shih MH; Li LJ; Yang YC; Chou HY; Lin CT; Su CY
    ACS Nano; 2013 Dec; 7(12):10818-24. PubMed ID: 24224797
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Highly thermally conductive and mechanically strong graphene fibers.
    Xin G; Yao T; Sun H; Scott SM; Shao D; Wang G; Lian J
    Science; 2015 Sep; 349(6252):1083-7. PubMed ID: 26339027
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High temperature thermal management with boron nitride nanosheets.
    Wang Y; Xu L; Yang Z; Xie H; Jiang P; Dai J; Luo W; Yao Y; Hitz E; Yang R; Yang B; Hu L
    Nanoscale; 2017 Dec; 10(1):167-173. PubMed ID: 29199302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.