These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32187988)

  • 81. Thermal conductivity of defective graphene: an efficient molecular dynamics study based on graphics processing units.
    Wu X; Han Q
    Nanotechnology; 2020 May; 31(21):215708. PubMed ID: 32032004
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments.
    Chen S; Moore AL; Cai W; Suk JW; An J; Mishra C; Amos C; Magnuson CW; Kang J; Shi L; Ruoff RS
    ACS Nano; 2011 Jan; 5(1):321-8. PubMed ID: 21162551
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Flexible Films for Smart Thermal Management: Influence of Structure Construction of a Two-Dimensional Graphene Network on Active Heat Dissipation Response Behavior.
    Cui S; Jiang F; Song N; Shi L; Ding P
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30352-30359. PubMed ID: 31353887
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management.
    Song N; Jiao D; Cui S; Hou X; Ding P; Shi L
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2924-2932. PubMed ID: 28045485
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites.
    Ha HW; Choudhury A; Kamal T; Kim DH; Park SY
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4623-30. PubMed ID: 22928645
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Selective edge modification in graphene and graphite by chemical oxidation.
    Yang M; Moriyama S; Higuchi M
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2974-8. PubMed ID: 24734719
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Upgrading the Properties of Reduced Graphene Oxide and Nitrogen-Doped Reduced Graphene Oxide Produced by Thermal Reduction toward Efficient ORR Electrocatalysts.
    Ramirez-Barria CS; Fernandes DM; Freire C; Villaro-Abalos E; Guerrero-Ruiz A; Rodríguez-Ramos I
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31835788
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition.
    Ryu J; Kim Y; Won D; Kim N; Park JS; Lee EK; Cho D; Cho SP; Kim SJ; Ryu GH; Shin HA; Lee Z; Hong BH; Cho S
    ACS Nano; 2014 Jan; 8(1):950-6. PubMed ID: 24358985
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Synthesis of graphene derivatives from asphaltenes and effect of carbonization temperature on their structural parameters.
    AlHumaidan FS; Rana MS; Vinoba M; AlSheeha HM; Ali AA; Navvamani R
    RSC Adv; 2023 Mar; 13(12):7766-7779. PubMed ID: 36909755
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.
    Noroozi M; Zakaria A; Radiman S; Abdul Wahab Z
    PLoS One; 2016; 11(4):e0152699. PubMed ID: 27064575
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors.
    Niu Z; Du J; Cao X; Sun Y; Zhou W; Hng HH; Ma J; Chen X; Xie S
    Small; 2012 Oct; 8(20):3201-8. PubMed ID: 22777966
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide.
    Olowojoba GB; Kopsidas S; Eslava S; Gutierrez ES; Kinloch AJ; Mattevi C; Rocha VG; Taylor AC
    J Mater Sci; 2017; 52(12):7323-7344. PubMed ID: 32226133
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Thermal conduction and rectification in few-layer graphene Y junctions.
    Zhang G; Zhang H
    Nanoscale; 2011 Nov; 3(11):4604-7. PubMed ID: 21987096
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Construction of low melting point alloy/graphene three-dimensional continuous thermal conductive pathway for improving in-plane and through-plane thermal conductivity of poly(vinylidene fluoride) composites.
    Zhang P; Zhang X; Ding X; Wang Y; Shu M; Zeng X; Gong Y; Zheng K; Tian X
    Nanotechnology; 2020 Nov; 31(47):475709. PubMed ID: 32894742
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications.
    Li Y; Xu F; Lin Z; Sun X; Peng Q; Yuan Y; Wang S; Yang Z; He X; Li Y
    Nanoscale; 2017 Oct; 9(38):14476-14485. PubMed ID: 28929154
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Graphene-Based Thermal Interface Materials: An Application-Oriented Perspective on Architecture Design.
    Lv L; Dai W; Li A; Lin CT
    Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961126
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Combined high degree of carboxylation and electronic conduction in graphene acid sets new limits for metal free catalysis in alcohol oxidation.
    Blanco M; Mosconi D; Otyepka M; Medveď M; Bakandritsos A; Agnoli S; Granozzi G
    Chem Sci; 2019 Nov; 10(41):9438-9445. PubMed ID: 32055319
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Graphene-Based Composite Membrane Prepared from Solid Carbon Source Catalyzed by Ni Nanoparticles.
    Li J; Liu J; Liu J; Lai J; Chen Y; Li W
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947741
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Carbonized Dehydroascorbic Acid: Aim for Targeted Repair of Graphene Defects and Bridge Connection of Graphene Sheets with Small Size.
    Li J; Lai J; Liu J; Lei R; Chen Y
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32187988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.