These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
539 related articles for article (PubMed ID: 32188070)
1. Paper-Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils. H Tayeb A; Tajvidi M; Bousfield D Molecules; 2020 Mar; 25(6):. PubMed ID: 32188070 [TBL] [Abstract][Full Text] [Related]
2. Multi-layer oil-resistant food serving containers made using cellulose nanofiber coated wood flour composites. Hossain R; Tajvidi M; Bousfield D; Gardner DJ Carbohydr Polym; 2021 Sep; 267():118221. PubMed ID: 34119175 [TBL] [Abstract][Full Text] [Related]
3. Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging. Pasquier E; Mattos BD; Koivula H; Khakalo A; Belgacem MN; Rojas OJ; Bras J ACS Appl Mater Interfaces; 2022 Jul; 14(26):30236-30245. PubMed ID: 35727693 [TBL] [Abstract][Full Text] [Related]
4. Development of Lignin-Containing Cellulose Nanofibrils Coated Paper-Based Filters for Effective Oil-Water Separation. Mittag A; Rahman MM; Hafez I; Tajvidi M Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676808 [TBL] [Abstract][Full Text] [Related]
5. Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils. Zhang CW; Nair SS; Chen H; Yan N; Farnood R; Li FY Carbohydr Polym; 2020 Feb; 230():115626. PubMed ID: 31887859 [TBL] [Abstract][Full Text] [Related]
6. Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. Travalini AP; Lamsal B; Magalhães WLE; Demiate IM Int J Biol Macromol; 2019 Oct; 139():1151-1161. PubMed ID: 31419552 [TBL] [Abstract][Full Text] [Related]
7. Facile strategy for improvement properties of whey protein isolate/walnut oil bio-packaging films: Using modified cellulose nanofibers. Samadani F; Behzad T; Enayati MS Int J Biol Macromol; 2019 Oct; 139():858-866. PubMed ID: 31398405 [TBL] [Abstract][Full Text] [Related]
8. Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging. Las-Casas B; Arantes V Int J Biol Macromol; 2023 Jul; 242(Pt 4):125057. PubMed ID: 37244346 [TBL] [Abstract][Full Text] [Related]
9. Facile fabrication of cellulose composite films with excellent UV resistance and antibacterial activity. Wang X; Wang S; Liu W; Wang S; Zhang L; Sang R; Hou Q; Li J Carbohydr Polym; 2019 Dec; 225():115213. PubMed ID: 31521302 [TBL] [Abstract][Full Text] [Related]
10. Nanolignin-containing cellulose nanofibrils (LCNF)-enabled multifunctional ratiometric fluorescent bio-nanocomposite films for food freshness monitoring. Zhao X; Wang W; Cheng J; Xia Y; Duan C; Zhong R; Zhao X; Li X; Ni Y Food Chem; 2024 Sep; 453():139673. PubMed ID: 38772308 [TBL] [Abstract][Full Text] [Related]
11. ZnO nanoparticles stabilized oregano essential oil Pickering emulsion for functional cellulose nanofibrils packaging films with antimicrobial and antioxidant activity. Wu M; Zhou Z; Yang J; Zhang M; Cai F; Lu P Int J Biol Macromol; 2021 Nov; 190():433-440. PubMed ID: 34481853 [TBL] [Abstract][Full Text] [Related]
12. MXene film electrodes with high mechanical strength, graded ion channels and high pseudocapacitive activity enabled by lignin-containing cellulose fibers. Yang P; Li Z; Zhang D; Yang K; Ling Y; Zhang T; Quan Q; Liu C; Chen W; Zhou X Int J Biol Macromol; 2024 Nov; 279(Pt 4):135476. PubMed ID: 39260646 [TBL] [Abstract][Full Text] [Related]
13. Influence of Lactic Acid Surface Modification of Cellulose Nanofibrils on the Properties of Cellulose Nanofibril Films and Cellulose Nanofibril-Poly(lactic acid) Composites. Lafia-Araga RA; Sabo R; Nabinejad O; Matuana L; Stark N Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572560 [TBL] [Abstract][Full Text] [Related]
14. Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings. Willberg-Keyriläinen P; Vartiainen J; Pelto J; Ropponen J Carbohydr Polym; 2017 Aug; 170():160-165. PubMed ID: 28521982 [TBL] [Abstract][Full Text] [Related]
15. BNNS/PVA bilayer composite film with multiple-improved properties by the synergistic actions of cellulose nanofibrils and lignin nanoparticles. Wang X; Bian H; Ni S; Sun S; Jiao L; Dai H Int J Biol Macromol; 2020 Aug; 157():259-266. PubMed ID: 32344092 [TBL] [Abstract][Full Text] [Related]
16. Development of high-barrier composite films for sustainable reduction of non-biodegradable materials in food packaging application. Zeng J; Ma Y; Li P; Zhang X; Gao W; Wang B; Xu J; Chen K Carbohydr Polym; 2024 Apr; 330():121824. PubMed ID: 38368104 [TBL] [Abstract][Full Text] [Related]
17. Preparation of nanobiocomposite film based on lemon waste containing cellulose nanofiber and savory essential oil: A new biodegradable active packaging system. Soofi M; Alizadeh A; Hamishehkar H; Almasi H; Roufegarinejad L Int J Biol Macromol; 2021 Feb; 169():352-361. PubMed ID: 33347932 [TBL] [Abstract][Full Text] [Related]
18. Effect of gamma irradiation on physico-mechanical and structural properties of active Farsi gum-CMC films containing Ziziphora clinopodioides essential oil and lignocellulose nanofibers for meat packaging. Bahari R; Shahbazi Y; Shavisi N J Food Sci; 2020 Oct; 85(10):3498-3508. PubMed ID: 32940370 [TBL] [Abstract][Full Text] [Related]
19. Wood inspired biobased nanocomposite films composed of xylans, lignosulfonates and cellulose nanofibers for active food packaging. Silva JM; Vilela C; Girão AV; Branco PC; Martins J; Freire MG; Silvestre AJD; Freire CSR Carbohydr Polym; 2024 Aug; 337():122112. PubMed ID: 38710545 [TBL] [Abstract][Full Text] [Related]
20. Organic-Inorganic Hybrid Planarization and Water Vapor Barrier Coatings on Cellulose Nanofibrils Substrates. Karasu F; Müller L; Ridaoui H; Ibn ElHaj M; Flodberg G; Aulin C; Axrup L; Leterrier Y Front Chem; 2018; 6():571. PubMed ID: 30525026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]