These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 32188076)
1. The Impact of Natural Compounds on S-Shaped Aβ42 Fibril: From Molecular Docking to Biophysical Characterization. Muscat S; Pallante L; Stojceski F; Danani A; Grasso G; Deriu MA Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32188076 [TBL] [Abstract][Full Text] [Related]
2. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations. Nguyen P; Derreumaux P Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046 [TBL] [Abstract][Full Text] [Related]
3. Biophysical Properties of the Fibril Structure of the Toxic Conformer of Amyloid-β42: Characterization by Atomic Force Microscopy in Liquid and Molecular Docking. Biyani R; Hirata K; Oqmhula K; Yurtsever A; Hongo K; Maezono R; Takagi M; Fukuma T; Biyani M ACS Appl Mater Interfaces; 2023 Jun; 15(23):27789-27800. PubMed ID: 37261999 [TBL] [Abstract][Full Text] [Related]
4. N-Terminus Binding Preference for Either Tanshinone or Analogue in Both Inhibition of Amyloid Aggregation and Disaggregation of Preformed Amyloid Fibrils-Toward Introducing a Kind of Novel Anti-Alzheimer Compounds. Dong M; Zhao W; Hu D; Ai H; Kang B ACS Chem Neurosci; 2017 Jul; 8(7):1577-1588. PubMed ID: 28406293 [TBL] [Abstract][Full Text] [Related]
5. The Anti-Amyloidogenic Action of Doxycycline: A Molecular Dynamics Study on the Interaction with Aβ42. Gautieri A; Beeg M; Gobbi M; Rigoldi F; Colombo L; Salmona M Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31546787 [TBL] [Abstract][Full Text] [Related]
6. Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity. Jin Y; Sun Y; Lei J; Wei G Phys Chem Chem Phys; 2018 Jun; 20(25):17208-17217. PubMed ID: 29900443 [TBL] [Abstract][Full Text] [Related]
7. Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer's Disease and Other Amyloid Diseases. Kreutzer AG; Nowick JS Acc Chem Res; 2018 Mar; 51(3):706-718. PubMed ID: 29508987 [TBL] [Abstract][Full Text] [Related]
8. Effects of natural compounds on conformational properties and hairpin formation of amyloid-β Ghorbani M; Soleymani H; Allahverdi A; Shojaeilangari S; Naderi-Manesh H J Biomol Struct Dyn; 2020 Jul; 38(11):3371-3383. PubMed ID: 31496378 [TBL] [Abstract][Full Text] [Related]
9. Elongation affinity, activation barrier, and stability of Aβ42 oligomers/fibrils in physiological saline. Rodriguez RA; Chen LY; Plascencia-Villa G; Perry G Biochem Biophys Res Commun; 2017 May; 487(2):444-449. PubMed ID: 28427941 [TBL] [Abstract][Full Text] [Related]
10. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β Shuaib S; Goyal B J Biomol Struct Dyn; 2018 Feb; 36(3):663-678. PubMed ID: 28162045 [TBL] [Abstract][Full Text] [Related]
11. Toward the Mode of Action of the Clinical Stage All-d-Enantiomeric Peptide RD2 on Aβ42 Aggregation. Zhang T; Gering I; Kutzsche J; Nagel-Steger L; Willbold D ACS Chem Neurosci; 2019 Dec; 10(12):4800-4809. PubMed ID: 31710458 [TBL] [Abstract][Full Text] [Related]
12. Computational design and evaluation of β-sheet breaker peptides for destabilizing Alzheimer's amyloid-β Shuaib S; Narang SS; Goyal D; Goyal B J Cell Biochem; 2019 Oct; 120(10):17935-17950. PubMed ID: 31162715 [TBL] [Abstract][Full Text] [Related]
13. Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ Saini RK; Shuaib S; Goyal D; Goyal B J Biomol Struct Dyn; 2019 Aug; 37(12):3183-3197. PubMed ID: 30582723 [TBL] [Abstract][Full Text] [Related]
14. NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer's disease: an investigation by docking, molecular dynamics, and DFT studies. Azam F; Alabdullah NH; Ehmedat HM; Abulifa AR; Taban I; Upadhyayula S J Biomol Struct Dyn; 2018 Jun; 36(8):2099-2117. PubMed ID: 28571516 [TBL] [Abstract][Full Text] [Related]
15. The role of phenolic OH groups of flavonoid compounds with H-bond formation ability to suppress amyloid mature fibrils by destabilizing β-sheet conformation of monomeric Aβ17-42. Andarzi Gargari S; Barzegar A; Tarinejad A PLoS One; 2018; 13(6):e0199541. PubMed ID: 29953467 [TBL] [Abstract][Full Text] [Related]
16. Biophysical and in Vivo Studies Identify a New Natural-Based Polyphenol, Counteracting Aβ Oligomerization in Vitro and Aβ Oligomer-Mediated Memory Impairment and Neuroinflammation in an Acute Mouse Model of Alzheimer's Disease. Tomaselli S; La Vitola P; Pagano K; Brandi E; Santamaria G; Galante D; D'Arrigo C; Moni L; Lambruschini C; Banfi L; Lucchetti J; Fracasso C; Molinari H; Forloni G; Balducci C; Ragona L ACS Chem Neurosci; 2019 Nov; 10(11):4462-4475. PubMed ID: 31603646 [TBL] [Abstract][Full Text] [Related]
17. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer's disease. Habchi J; Arosio P; Perni M; Costa AR; Yagi-Utsumi M; Joshi P; Chia S; Cohen SI; Müller MB; Linse S; Nollen EA; Dobson CM; Knowles TP; Vendruscolo M Sci Adv; 2016 Feb; 2(2):e1501244. PubMed ID: 26933687 [TBL] [Abstract][Full Text] [Related]
19. Insights into the Interaction Mechanism of Ligands with Aβ42 Based on Molecular Dynamics Simulations and Mechanics: Implications of Role of Common Binding Site in Drug Design for Alzheimer's Disease. Kundaikar HS; Degani MS Chem Biol Drug Des; 2015 Oct; 86(4):805-12. PubMed ID: 25763767 [TBL] [Abstract][Full Text] [Related]
20. Elucidating the Aβ42 Anti-Aggregation Mechanism of Action of Tramiprosate in Alzheimer's Disease: Integrating Molecular Analytical Methods, Pharmacokinetic and Clinical Data. Kocis P; Tolar M; Yu J; Sinko W; Ray S; Blennow K; Fillit H; Hey JA CNS Drugs; 2017 Jun; 31(6):495-509. PubMed ID: 28435985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]