These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32188249)

  • 21. Identification of the Active-Layer Structures for Acidic Oxygen Evolution from 9R-BaIrO
    Li N; Cai L; Wang C; Lin Y; Huang J; Sheng H; Pan H; Zhang W; Ji Q; Duan H; Hu W; Zhang W; Hu F; Tan H; Sun Z; Song B; Jin S; Yan W
    J Am Chem Soc; 2021 Nov; 143(43):18001-18009. PubMed ID: 34694127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design-controlled synthesis of IrO
    de Freitas IC; Parreira LS; Barbosa ECM; Novaes BA; Mou T; Alves TV; Quiroz J; Wang YC; Slater TJ; Thomas A; Wang B; Haigh SJ; Camargo PHC
    Nanoscale; 2020 Jun; 12(23):12281-12291. PubMed ID: 32319490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Valence-Manganese Driven Strong Anchoring of Iridium Species for Robust Acidic Water Oxidation.
    Weng Y; Wang K; Li S; Wang Y; Lei L; Zhuang L; Xu Z
    Adv Sci (Weinh); 2023 Mar; 10(8):e2205920. PubMed ID: 36683162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rational Manipulation of IrO
    Sun W; Zhou Z; Zaman WQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41855-41862. PubMed ID: 29148711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical Preparation of Crystalline Hydrous Iridium Oxide and Its Use in Oxygen Evolution Catalysis.
    Qi J; Zeng H; Gu L; Liu Z; Zeng Y; Hong E; Lai Y; Liu T; Yang C
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15269-15278. PubMed ID: 36930828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Confining High-Valence Iridium Single Sites onto Nickel Oxyhydroxide for Robust Oxygen Evolution.
    He Q; Qiao S; Zhou Q; Zhou Y; Shou H; Zhang P; Xu W; Liu D; Chen S; Wu X; Song L
    Nano Lett; 2022 May; 22(9):3832-3839. PubMed ID: 35451305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the role of microkinetic network structure in the interplay between oxygen evolution reaction and catalyst dissolution.
    Dam AP; Papakonstantinou G; Sundmacher K
    Sci Rep; 2020 Aug; 10(1):14140. PubMed ID: 32839461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Analysis of the Unusual Stability of an IrNbO
    Spöri C; Falling LJ; Kroschel M; Brand C; Bonakdarpour A; Kühl S; Berger D; Gliech M; Jones TE; Wilkinson DP; Strasser P
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3748-3761. PubMed ID: 33442973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrodeposition of High-Surface-Area IrO
    Park YJ; Lee J; Park YS; Yang J; Jang MJ; Jeong J; Choe S; Lee JW; Kwon JD; Choi SM
    Front Chem; 2020; 8():593272. PubMed ID: 33195098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Simple Method for Synthesizing Highly Active Amorphous Iridium Oxide for Oxygen Evolution under Acidic Conditions.
    Salimi P; Najafpour MM
    Chemistry; 2020 Dec; 26(71):17063-17068. PubMed ID: 32852097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inter-relationships between Oxygen Evolution and Iridium Dissolution Mechanisms.
    Lončar A; Escalera-López D; Cherevko S; Hodnik N
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202114437. PubMed ID: 34942052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lattice Oxygen Exchange in Rutile IrO
    Schweinar K; Gault B; Mouton I; Kasian O
    J Phys Chem Lett; 2020 Jul; 11(13):5008-5014. PubMed ID: 32496784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activating Inert, Nonprecious Perovskites with Iridium Dopants for Efficient Oxygen Evolution Reaction under Acidic Conditions.
    Liang X; Shi L; Liu Y; Chen H; Si R; Yan W; Zhang Q; Li GD; Yang L; Zou X
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7631-7635. PubMed ID: 30775830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 A cm
    Li R; Wang H; Hu F; Chan KC; Liu X; Lu Z; Wang J; Li Z; Zeng L; Li Y; Wu X; Xiong Y
    Nat Commun; 2021 Jun; 12(1):3540. PubMed ID: 34112770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rational Design of Rhodium-Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution.
    Guo H; Fang Z; Li H; Fernandez D; Henkelman G; Humphrey SM; Yu G
    ACS Nano; 2019 Nov; 13(11):13225-13234. PubMed ID: 31668069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of Active Sites via Crystal Phase, Composition, and Morphology for Efficient Low-Iridium Oxygen Evolution Catalysts.
    Chen H; Shi L; Liang X; Wang L; Asefa T; Zou X
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19654-19658. PubMed ID: 32485084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Supported Hierarchical IrO
    Liu J; Wang Z; Su K; Xv D; Zhao D; Li J; Tong H; Qian D; Yang C; Lu Z
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25854-25862. PubMed ID: 31256582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic Water Oxidation.
    Zu L; Qian X; Zhao S; Liang Q; Chen YE; Liu M; Su BJ; Wu KH; Qu L; Duan L; Zhan H; Zhang JY; Li C; Li W; Juang JY; Zhu J; Li D; Yu A; Zhao D
    J Am Chem Soc; 2022 Feb; 144(5):2208-2217. PubMed ID: 35099956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER).
    Reier T; Pawolek Z; Cherevko S; Bruns M; Jones T; Teschner D; Selve S; Bergmann A; Nong HN; Schlögl R; Mayrhofer KJ; Strasser P
    J Am Chem Soc; 2015 Oct; 137(40):13031-40. PubMed ID: 26355767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.