These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 32188788)
1. c-di-AMP hydrolysis by the phosphodiesterase AtaC promotes differentiation of multicellular bacteria. Latoscha A; Drexler DJ; Al-Bassam MM; Bandera AM; Kaever V; Findlay KC; Witte G; Tschowri N Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7392-7400. PubMed ID: 32188788 [TBL] [Abstract][Full Text] [Related]
2. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus. Bowman L; Zeden MS; Schuster CF; Kaever V; Gründling A J Biol Chem; 2016 Dec; 291(53):26970-26986. PubMed ID: 27834680 [TBL] [Abstract][Full Text] [Related]
3. Functional Analysis of a c-di-AMP-specific Phosphodiesterase MsPDE from Mycobacterium smegmatis. Tang Q; Luo Y; Zheng C; Yin K; Ali MK; Li X; He J Int J Biol Sci; 2015; 11(7):813-24. PubMed ID: 26078723 [TBL] [Abstract][Full Text] [Related]
4. An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis. Gundlach J; Mehne FM; Herzberg C; Kampf J; Valerius O; Kaever V; Stülke J J Bacteriol; 2015 Oct; 197(20):3265-74. PubMed ID: 26240071 [TBL] [Abstract][Full Text] [Related]
5. Stress Suppressor Screening Leads to Detection of Regulation of Cyclic di-AMP Homeostasis by a Trk Family Effector Protein in Streptococcus pneumoniae. Zarrella TM; Metzger DW; Bai G J Bacteriol; 2018 Jun; 200(12):. PubMed ID: 29483167 [TBL] [Abstract][Full Text] [Related]
6. A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Commichau FM; Dickmanns A; Gundlach J; Ficner R; Stülke J Mol Microbiol; 2015 Jul; 97(2):189-204. PubMed ID: 25869574 [TBL] [Abstract][Full Text] [Related]
7. Nuclease-Resistant c-di-AMP Derivatives That Differentially Recognize RNA and Protein Receptors. Meehan RE; Torgerson CD; Gaffney BL; Jones RA; Strobel SA Biochemistry; 2016 Feb; 55(6):837-49. PubMed ID: 26789423 [TBL] [Abstract][Full Text] [Related]
8. Cyclic-di-AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in Lactococcus lactis. Zhu Y; Pham TH; Nhiep TH; Vu NM; Marcellin E; Chakrabortti A; Wang Y; Waanders J; Lo R; Huston WM; Bansal N; Nielsen LK; Liang ZX; Turner MS Mol Microbiol; 2016 Mar; 99(6):1015-27. PubMed ID: 26585449 [TBL] [Abstract][Full Text] [Related]
9. A network of acetyl phosphate-dependent modification modulates c-di-AMP homeostasis in Fu Y; Zhao L-C; Shen J-L; Zhou S-Y; Yin B-C; Ye B-C; You D mBio; 2024 Aug; 15(8):e0141124. PubMed ID: 38980040 [TBL] [Abstract][Full Text] [Related]
10. Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria. Pham TH; Liang ZX; Marcellin E; Turner MS Curr Genet; 2016 Nov; 62(4):731-738. PubMed ID: 27074767 [TBL] [Abstract][Full Text] [Related]
12. Two-step synthesis and hydrolysis of cyclic di-AMP in Mycobacterium tuberculosis. Manikandan K; Sabareesh V; Singh N; Saigal K; Mechold U; Sinha KM PLoS One; 2014; 9(1):e86096. PubMed ID: 24465894 [TBL] [Abstract][Full Text] [Related]
13. Making and Breaking of an Essential Poison: the Cyclases and Phosphodiesterases That Produce and Degrade the Essential Second Messenger Cyclic di-AMP in Bacteria. Commichau FM; Heidemann JL; Ficner R; Stülke J J Bacteriol; 2019 Jan; 201(1):. PubMed ID: 30224435 [TBL] [Abstract][Full Text] [Related]
14. Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae. Bai Y; Yang J; Zarrella TM; Zhang Y; Metzger DW; Bai G J Bacteriol; 2014 Feb; 196(3):614-23. PubMed ID: 24272783 [TBL] [Abstract][Full Text] [Related]
15. Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection. Yang J; Bai Y; Zhang Y; Gabrielle VD; Jin L; Bai G Mol Microbiol; 2014 Jul; 93(1):65-79. PubMed ID: 24806618 [TBL] [Abstract][Full Text] [Related]
16. Too much of a good thing: regulated depletion of c-di-AMP in the bacterial cytoplasm. Huynh TN; Woodward JJ Curr Opin Microbiol; 2016 Apr; 30():22-29. PubMed ID: 26773214 [TBL] [Abstract][Full Text] [Related]
17. Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase. Wang F; He Q; Su K; Wei T; Xu S; Gu L Biochem J; 2018 Jan; 475(1):191-205. PubMed ID: 29203646 [TBL] [Abstract][Full Text] [Related]
18. Atypical cyclic di-AMP signaling is essential for Porphyromonas gingivalis growth and regulation of cell envelope homeostasis and virulence. Moradali MF; Ghods S; Bähre H; Lamont RJ; Scott DA; Seifert R NPJ Biofilms Microbiomes; 2022 Jul; 8(1):53. PubMed ID: 35794154 [TBL] [Abstract][Full Text] [Related]
19. Bacterial second messenger cyclic di-AMP in streptococci. Wright MJ; Bai G Mol Microbiol; 2023 Dec; 120(6):791-804. PubMed ID: 37898560 [TBL] [Abstract][Full Text] [Related]
20. Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. Bai Y; Yang J; Zhou X; Ding X; Eisele LE; Bai G PLoS One; 2012; 7(4):e35206. PubMed ID: 22529992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]