These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32189026)

  • 1. Pseudo-Symmetric Assembly of Protodomains as a Common Denominator in the Evolution of Polytopic Helical Membrane Proteins.
    Youkharibache P; Tran A; Abrol R
    J Mol Evol; 2020 May; 88(4):319-344. PubMed ID: 32189026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protodomains: Symmetry-Related Supersecondary Structures in Proteins and Self-Complementarity.
    Youkharibache P
    Methods Mol Biol; 2019; 1958():187-219. PubMed ID: 30945220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-stage model of helical membrane protein folding: Role of membrane-water interface as the intermediate stage vestibule for TM helices during their in membrano assembly.
    Kawamala BK; Abrol R
    Biochem Biophys Res Commun; 2022 Oct; 624():1-7. PubMed ID: 35926384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudo 2-fold symmetry in the copper-binding domain of arthropodan haemocyanins. Possible implications for the evolution of oxygen transport proteins.
    Volbeda A; Hol WG
    J Mol Biol; 1989 Apr; 206(3):531-46. PubMed ID: 2716060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverted topologies in membrane proteins: a mini-review.
    Duran AM; Meiler J
    Comput Struct Biotechnol J; 2013; 8():e201308004. PubMed ID: 24688744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence homology between bacteriorhodopsin and G-protein coupled receptors: exon shuffling or evolution by duplication?
    Taylor EW; Agarwal A
    FEBS Lett; 1993 Jul; 325(3):161-6. PubMed ID: 8319802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-Translational Folding of the First Transmembrane Domain of ABC-Transporter CFTR is Supported by Assembly with the First Cytosolic Domain.
    Kleizen B; van Willigen M; Mijnders M; Peters F; Grudniewska M; Hillenaar T; Thomas A; Kooijman L; Peters KW; Frizzell R; van der Sluijs P; Braakman I
    J Mol Biol; 2021 Jun; 433(13):166955. PubMed ID: 33771570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural plasticity of a designer protein sheds light on β-propeller protein evolution.
    Mylemans B; Laier I; Kamata K; Akashi S; Noguchi H; Tame JRH; Voet ARD
    FEBS J; 2021 Jan; 288(2):530-545. PubMed ID: 32343866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superfamily of G-protein coupled receptors (GPCRs)--extraordinary and outstanding success of evolution.
    Kochman K
    Postepy Hig Med Dosw (Online); 2014 Oct; 68():1225-37. PubMed ID: 25380205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular evolution and the origins of symmetry: reconstruction of a three-fold symmetric globular protein.
    Broom A; Doxey AC; Lobsanov YD; Berthin LG; Rose DR; Howell PL; McConkey BJ; Meiering EM
    Structure; 2012 Jan; 20(1):161-71. PubMed ID: 22178248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of symmetric protein architecture from a simple peptide motif: evolutionary models.
    Blaber M; Lee J; Longo L
    Cell Mol Life Sci; 2012 Dec; 69(23):3999-4006. PubMed ID: 22790181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of protein steric constraints on the symmetry of membrane protein polyhedra.
    Ma M; Haselwandter CA
    Phys Rev E; 2020 Oct; 102(4-1):042411. PubMed ID: 33212734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal principles of membrane protein assembly, composition and evolution.
    Situ AJ; Ulmer TS
    PLoS One; 2019; 14(8):e0221372. PubMed ID: 31415673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting internally symmetric protein structures.
    Kim C; Basner J; Lee B
    BMC Bioinformatics; 2010 Jun; 11():303. PubMed ID: 20525292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns.
    Park Y; Helms V
    Proteins; 2006 Sep; 64(4):895-905. PubMed ID: 16807902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognizing asymmetry in pseudo-symmetry; structural insights into the interaction between amphipathic α-helices and X-bundle proteins.
    Haddad JF; Yang Y; Yeung S; Couture JF
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1605-1612. PubMed ID: 28652208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bundles of amphipathic transmembrane alpha-helices as a structural motif for ion-conducting channel proteins: studies on sodium channels and acetylcholine receptors.
    Oiki S; Madison V; Montal M
    Proteins; 1990; 8(3):226-36. PubMed ID: 2177892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do helix-helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo-oligomeric helical bundles.
    DeGrado WF; Gratkowski H; Lear JD
    Protein Sci; 2003 Apr; 12(4):647-65. PubMed ID: 12649422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internal symmetry in protein structures: prevalence, functional relevance and evolution.
    Balaji S
    Curr Opin Struct Biol; 2015 Jun; 32():156-66. PubMed ID: 26093245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Y. bercovieri Anbu crystal structure sheds light on the evolution of highly (pseudo)symmetric multimers.
    Piasecka A; Czapinska H; Vielberg MT; Szczepanowski RH; Kiefersauer R; Reed S; Groll M; Bochtler M
    J Mol Biol; 2018 Mar; 430(5):611-627. PubMed ID: 29258816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.