These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 32189046)
1. Genomic, transcriptomic, and metabolic characterizations of Escherichia coli adapted to branched-chain higher alcohol tolerance. Wang B; Guo Y; Xu Z; Tu R; Wang Q Appl Microbiol Biotechnol; 2020 May; 104(9):4171-4184. PubMed ID: 32189046 [TBL] [Abstract][Full Text] [Related]
2. Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Minty JJ; Lesnefsky AA; Lin F; Chen Y; Zaroff TA; Veloso AB; Xie B; McConnell CA; Ward RJ; Schwartz DR; Rouillard JM; Gao Y; Gulari E; Lin XN Microb Cell Fact; 2011 Mar; 10():18. PubMed ID: 21435272 [TBL] [Abstract][Full Text] [Related]
3. Adaptive laboratory evolution and transcriptomics-guided engineering of Escherichia coli for increased isobutanol tolerance. Jang YS; Yang J; Kim JK; Kim TI; Park YC; Kim IJ; Kim KH Biotechnol J; 2024 Jan; 19(1):e2300270. PubMed ID: 37799109 [TBL] [Abstract][Full Text] [Related]
4. Improvement of Fusel Alcohol Production by Engineering of the Yeast Branched-Chain Amino Acid Aminotransaminase. Koonthongkaew J; Ploysongsri N; Toyokawa Y; Ruangpornvisuti V; Takagi H Appl Environ Microbiol; 2022 Jul; 88(13):e0055722. PubMed ID: 35699439 [TBL] [Abstract][Full Text] [Related]
5. Activation of alternative metabolic pathways diverts carbon flux away from isobutanol formation in an engineered Escherichia coli strain. Deb SS; Reshamwala SMS; Lali AM Biotechnol Lett; 2019 Jul; 41(6-7):823-836. PubMed ID: 31093837 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial Compartmentalization Confers Specificity to the 2-Ketoacid Recursive Pathway: Increasing Isopentanol Production in Hammer SK; Zhang Y; Avalos JL ACS Synth Biol; 2020 Mar; 9(3):546-555. PubMed ID: 32049515 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Escherichia coli for the production of isobutanol: a review. Gu P; Liu L; Ma Q; Dong Z; Wang Q; Xu J; Huang Z; Li Q World J Microbiol Biotechnol; 2021 Sep; 37(10):168. PubMed ID: 34487256 [TBL] [Abstract][Full Text] [Related]
8. The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain. Martínez-Alcantar L; Díaz-Pérez AL; Campos-García J World J Microbiol Biotechnol; 2019 Nov; 35(12):189. PubMed ID: 31748890 [TBL] [Abstract][Full Text] [Related]
9. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli. Chen X; Xu J; Yang L; Yuan Z; Xiao S; Zhang Y; Liang C; He M; Guo Y J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1473-9. PubMed ID: 26350079 [TBL] [Abstract][Full Text] [Related]
10. An evolutionary strategy for isobutanol production strain development in Escherichia coli. Smith KM; Liao JC Metab Eng; 2011 Nov; 13(6):674-81. PubMed ID: 21911074 [TBL] [Abstract][Full Text] [Related]
11. Reconstruction of metabolic pathway for isobutanol production in Escherichia coli. Noda S; Mori Y; Oyama S; Kondo A; Araki M; Shirai T Microb Cell Fact; 2019 Jul; 18(1):124. PubMed ID: 31319852 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals. Rau MH; Calero P; Lennen RM; Long KS; Nielsen AT Microb Cell Fact; 2016 Oct; 15(1):176. PubMed ID: 27737709 [TBL] [Abstract][Full Text] [Related]
13. Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis. Hammer SK; Avalos JL Metab Eng; 2017 Nov; 44():302-312. PubMed ID: 29037781 [TBL] [Abstract][Full Text] [Related]
14. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Atsumi S; Wu TY; Machado IM; Huang WC; Chen PY; Pellegrini M; Liao JC Mol Syst Biol; 2010 Dec; 6():449. PubMed ID: 21179021 [TBL] [Abstract][Full Text] [Related]
15. Global Functional Analysis of Butanol-Sensitive Jeong H; Lee SW; Kim SH; Kim EY; Kim S; Yoon SH J Microbiol Biotechnol; 2017 Jun; 27(6):1171-1179. PubMed ID: 28335589 [TBL] [Abstract][Full Text] [Related]
16. Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. Fisher MA; Boyarskiy S; Yamada MR; Kong N; Bauer S; Tullman-Ercek D ACS Synth Biol; 2014 Jan; 3(1):30-40. PubMed ID: 23991711 [TBL] [Abstract][Full Text] [Related]
17. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Atsumi S; Hanai T; Liao JC Nature; 2008 Jan; 451(7174):86-9. PubMed ID: 18172501 [TBL] [Abstract][Full Text] [Related]
18. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Atsumi S; Wu TY; Eckl EM; Hawkins SD; Buelter T; Liao JC Appl Microbiol Biotechnol; 2010 Jan; 85(3):651-7. PubMed ID: 19609521 [TBL] [Abstract][Full Text] [Related]
19. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Chong H; Geng H; Zhang H; Song H; Huang L; Jiang R Biotechnol Bioeng; 2014 Apr; 111(4):700-8. PubMed ID: 24203355 [TBL] [Abstract][Full Text] [Related]
20. Branched-chain higher alcohols. Wang BW; Shi AQ; Tu R; Zhang XL; Wang QH; Bai FW Adv Biochem Eng Biotechnol; 2012; 128():101-18. PubMed ID: 22109725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]