These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32189477)

  • 1. Origin and adaptation of green-sensitive (RH2) pigments in vertebrates.
    Yokoyama S; Jia H
    FEBS Open Bio; 2020 May; 10(5):873-882. PubMed ID: 32189477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
    Chinen A; Matsumoto Y; Kawamura S
    Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.
    Lagman D; Ocampo Daza D; Widmark J; Abalo XM; Sundström G; Larhammar D
    BMC Evol Biol; 2013 Nov; 13():238. PubMed ID: 24180662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and functional characterization of opsins in barfin flounder (Verasper moseri).
    Kasagi S; Mizusawa K; Murakami N; Andoh T; Furufuji S; Kawamura S; Takahashi A
    Gene; 2015 Feb; 556(2):182-91. PubMed ID: 25433330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments.
    Yokoyama S
    J Hered; 2000; 91(3):215-20. PubMed ID: 10833047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of the green-light-sensitive visual opsin genes (RH2) in teleost fishes.
    Musilova Z; Cortesi F
    Vision Res; 2023 May; 206():108204. PubMed ID: 36868011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple method for studying the molecular mechanisms of ultraviolet and violet reception in vertebrates.
    Yokoyama S; Tada T; Liu Y; Faggionato D; Altun A
    BMC Evol Biol; 2016 Mar; 16():64. PubMed ID: 27001075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting peak spectral sensitivities of vertebrate cone visual pigments using atomistic molecular simulations.
    Patel JS; Brown CJ; Ytreberg FM; Stenkamp DL
    PLoS Comput Biol; 2018 Jan; 14(1):e1005974. PubMed ID: 29364888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene duplication and spectral diversification of cone visual pigments of zebrafish.
    Chinen A; Hamaoka T; Yamada Y; Kawamura S
    Genetics; 2003 Feb; 163(2):663-75. PubMed ID: 12618404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary dynamics of rhodopsin type 2 opsins in vertebrates.
    Yokoyama S; Tada T
    Mol Biol Evol; 2010 Jan; 27(1):133-41. PubMed ID: 19759234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae).
    Yokoyama S; Zhang H; Radlwimmer FB; Blow NS
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6279-84. PubMed ID: 10339578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orthologous Divergence and Paralogous Anticonvergence in Molecular Evolution of Triplicated Green Opsin Genes in Medaka Fish, Genus Oryzias.
    Matsumoto Y; Oda S; Mitani H; Kawamura S
    Genome Biol Evol; 2020 Jun; 12(6):911-923. PubMed ID: 32467976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual pigment genes and absorbance spectra in the Japanese sardine Sardinops melanostictus (Teleostei: Clupeiformes).
    Miyazaki T; Kondrashev SL; Tsuchiya T
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Apr; 218():54-63. PubMed ID: 29496579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of vertebrate visual pigments.
    Bowmaker JK
    Vision Res; 2008 Sep; 48(20):2022-41. PubMed ID: 18590925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analyses of the green visual pigments of rabbit (Oryctolagus cuniculus) and rat (Rattus norvegicus).
    Radlwimmer FB; Yokoyama S
    Gene; 1998 Sep; 218(1-2):103-9. PubMed ID: 9751808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Genetic Mechanisms Contribute to Visual Sensitivity Variation in the Labridae.
    Phillips GA; Carleton KL; Marshall NJ
    Mol Biol Evol; 2016 Jan; 33(1):201-15. PubMed ID: 26464127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates.
    Yokoyama S; Yang H; Starmer WT
    Genetics; 2008 Aug; 179(4):2037-43. PubMed ID: 18660543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual Pigments, Ocular Filters and the Evolution of Snake Vision.
    Simões BF; Sampaio FL; Douglas RH; Kodandaramaiah U; Casewell NR; Harrison RA; Hart NS; Partridge JC; Hunt DM; Gower DJ
    Mol Biol Evol; 2016 Oct; 33(10):2483-95. PubMed ID: 27535583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of spectral tuning in the RH2 pigments of Tokay gecko and American chameleon.
    Takenaka N; Yokoyama S
    Gene; 2007 Sep; 399(1):26-32. PubMed ID: 17590287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.