BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 32189503)

  • 21. Benzo- and Naphthopentalenes: Syntheses, Structures, and Properties.
    Kato S; Kuwako S; Takahashi N; Kijima T; Nakamura Y
    J Org Chem; 2016 Sep; 81(17):7700-10. PubMed ID: 27467138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dications of fluorenylidenes. Relationship between electrochemical oxidation potentials and antiaromaticity in diphenyl-substituted fluorenyl cations.
    Mills NS; Benish MA; Ybarra C
    J Org Chem; 2002 Apr; 67(7):2003-12. PubMed ID: 11925203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pentaleno[1,2-a:4,5']diacenaphthylenes: Uniquely Stabilized Pentalene Derivatives.
    Yuan B; Zhuang J; Kirmess KM; Bridgmohan CN; Whalley AC; Wang L; Plunkett KN
    J Org Chem; 2016 Sep; 81(18):8312-8. PubMed ID: 27559925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Exploration of Substituent Effects on the Photophysical Properties of Monobenzopentalenes.
    Gazdag T; Meiszter E; Mayer PJ; Holczbauer T; Ottosson H; Maurer AB; Abrahamsson M; London G
    Chemphyschem; 2024 Apr; 25(7):e202300737. PubMed ID: 38284145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A DFT Study of the Modulation of the Antiaromatic and Open-Shell Character of Dibenzo[a,f]pentalene by Employing Three Strategies: Additional Benzoannulation, BN/CC Isosterism, and Substitution.
    Baranac-Stojanović M
    Chemistry; 2019 Jul; 25(41):9747-9757. PubMed ID: 31107568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of dicyclopenta[a,e]pentalenes via a molybdenum carbonyl mediated tandem allenic Pauson-Khand reaction and the X-ray crystal structure of a planar dicyclopenta[a,e]pentalene.
    Cao H; Van Ornum SG; Deschamps J; Flippen-Anderson J; Laib F; Cook JM
    J Am Chem Soc; 2005 Jan; 127(3):933-43. PubMed ID: 15656632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dications of fluorenylidenes. Contribution of magnetic and structural effects to the antiaromaticity of fluorenylidene dications with cyclic substituents.
    Mills NS
    J Org Chem; 2002 Oct; 67(20):7029-36. PubMed ID: 12353996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antiaromaticity in fluorenylidene dications. Experimental and theoretical evidence for the relationship between the HOMO/LUMO gap and antiaromaticity.
    Mills NS; Levy A; Plummer BF
    J Org Chem; 2004 Oct; 69(20):6623-33. PubMed ID: 15387584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased Antiaromaticity through Pentalene Connection in [
    Wössner JS; Kohn J; Wassy D; Hermann M; Grimme S; Esser B
    Org Lett; 2022 Feb; 24(4):983-988. PubMed ID: 35029397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulating Paratropicity Strength in Diareno-Fused Antiaromatics.
    Frederickson CK; Zakharov LN; Haley MM
    J Am Chem Soc; 2016 Dec; 138(51):16827-16838. PubMed ID: 27966911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational Design and Synthesis of Unsaturated Se-Containing Osmacycles with σ-Aromaticity.
    Zhou X; Wu J; Hao Y; Zhu C; Zhuo Q; Xia H; Zhu J
    Chemistry; 2018 Feb; 24(10):2389-2395. PubMed ID: 29024141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of transition state aromaticity and antiaromaticity on intrinsic barriers of proton transfers in aromatic and antiaromatic heterocyclic systems; an ab initio study.
    Bernasconi CF; Wenzel PJ
    J Org Chem; 2010 Dec; 75(24):8422-34. PubMed ID: 21080690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the influence of graphene on antiaromaticity of pentalene.
    Sudhakaran KP; Benny A; John AT; Hariharan M
    Phys Chem Chem Phys; 2023 Oct; 25(40):26986-26990. PubMed ID: 37812393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The aromaticity/antiaromaticity continuum. 1. Comparison of the aromaticity of the dianion and the antiaromaticity of the dication of tetrabenzo[5.5]fulvalene via magnetic measures.
    Mills NS; Benish M
    J Org Chem; 2006 Mar; 71(6):2207-13. PubMed ID: 16526764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sigma-aromaticity and sigma-antiaromaticity in saturated inorganic rings.
    Li ZH; Moran D; Fan KN; Schleyer Pv
    J Phys Chem A; 2005 Apr; 109(16):3711-6. PubMed ID: 16839038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative study of aromaticity in tetraoxa[8]circulenes.
    Radenković S; Gutman I; Bultinck P
    J Phys Chem A; 2012 Sep; 116(37):9421-30. PubMed ID: 22937838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regioselective Synthesis of [3]Naphthylenes and Tuning of Their Antiaromaticity.
    Jin Z; Teo YC; Teat SJ; Xia Y
    J Am Chem Soc; 2017 Nov; 139(44):15933-15939. PubMed ID: 28956438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. B2N2-Dibenzo[a,e]pentalenes: Effect of the BN Orientation Pattern on Antiaromaticity and Optoelectronic Properties.
    Wang XY; Narita A; Feng X; Müllen K
    J Am Chem Soc; 2015 Jun; 137(24):7668-71. PubMed ID: 26046954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localized Antiaromaticity Hotspot Drives Reductive Dehydrogenative Cyclizations in Bis- and Mono-Helicenes.
    Zhou Z; Egger DT; Hu C; Pennachio M; Wei Z; Kawade RK; Üngör Ö; Gershoni-Poranne R; Petrukhina MA; Alabugin IV
    J Am Chem Soc; 2022 Jul; 144(27):12321-12338. PubMed ID: 35652918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel aromatic and antiaromatic systems.
    Breslow R
    Chem Rec; 2014 Dec; 14(6):1174-82. PubMed ID: 25335917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.