These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 32189713)
1. Correlation between Arteriole Membrane Potential and Cerebral Vasospasm after Subarachnoid Hemorrhage in Rats. Zhao D; He X; Liu L; Liu Q; Xu H; Ji Y; Zhu L; Wang G; Xu J; Wang Y Neurol India; 2020; 68(2):327-332. PubMed ID: 32189713 [TBL] [Abstract][Full Text] [Related]
2. Effect of 18β-glycyrrhetinic acid on cerebral vasospasm caused by asymmetric dimethylarginine after experimental subarachnoid hemorrhage in rats. Zhao D; Liu Q; Ji Y; Wang G; He X; Tian W; Xu H; Lei T; Wang Y Neurol Res; 2015 Jun; 37(6):476-83. PubMed ID: 25475507 [TBL] [Abstract][Full Text] [Related]
3. Expression and function of inwardly rectifying potassium channels after experimental subarachnoid hemorrhage. Weyer GW; Jahromi BS; Aihara Y; Agbaje-Williams M; Nikitina E; Zhang ZD; Macdonald RL J Cereb Blood Flow Metab; 2006 Mar; 26(3):382-91. PubMed ID: 16079788 [TBL] [Abstract][Full Text] [Related]
4. The role of rosiglitazone in the proliferation of vascular smooth muscle cells after experimental subarachnoid hemorrhage. Cheng MF; Song JN; Li DD; Zhao YL; An JY; Sun P; Luo XH Acta Neurochir (Wien); 2014 Nov; 156(11):2103-9. PubMed ID: 25139403 [TBL] [Abstract][Full Text] [Related]
5. Vascular KCNQ (Kv7) potassium channels as common signaling intermediates and therapeutic targets in cerebral vasospasm. Mani BK; O'Dowd J; Kumar L; Brueggemann LI; Ross M; Byron KL J Cardiovasc Pharmacol; 2013 Jan; 61(1):51-62. PubMed ID: 23107868 [TBL] [Abstract][Full Text] [Related]
6. Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. Nystoriak MA; O'Connor KP; Sonkusare SK; Brayden JE; Nelson MT; Wellman GC Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H803-12. PubMed ID: 21148767 [TBL] [Abstract][Full Text] [Related]
7. Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage. Sun BL; Zheng CB; Yang MF; Yuan H; Zhang SM; Wang LX Cell Mol Neurobiol; 2009 Mar; 29(2):235-41. PubMed ID: 18821009 [TBL] [Abstract][Full Text] [Related]
8. Effect of endothelin-1 receptor antagonist BQ-123 on basilar artery diameter after subarachnoid hemorrhage (SAH) in rats. Jośko J; Hendryk S; Jedrzejowska-Szypułka H; Słowiński J; Gwóźdź B; Lange D; Harabin-Słowińska M J Physiol Pharmacol; 2000 Jun; 51(2):241-9. PubMed ID: 10898097 [TBL] [Abstract][Full Text] [Related]
9. Effects of aging on cerebral vasospasm after subarachnoid hemorrhage in rabbits. Nakajima M; Date I; Takahashi K; Ninomiya Y; Asari S; Ohmoto T Stroke; 2001 Mar; 32(3):620-8. PubMed ID: 11239177 [TBL] [Abstract][Full Text] [Related]
11. Preserved BK channel function in vasospastic myocytes from a dog model of subarachnoid hemorrhage. Jahromi BS; Aihara Y; Ai J; Zhang ZD; Weyer G; Nikitina E; Yassari R; Houamed KM; Macdonald RL J Vasc Res; 2008; 45(5):402-15. PubMed ID: 18401179 [TBL] [Abstract][Full Text] [Related]
13. Alteration in voltage-dependent calcium channels in dog basilar artery after subarachnoid hemorrhage. Laboratory investigation. Nikitina E; Kawashima A; Takahashi M; Zhang ZD; Shang X; Ai J; Macdonald RL J Neurosurg; 2010 Oct; 113(4):870-80. PubMed ID: 20225918 [TBL] [Abstract][Full Text] [Related]
14. Reactivity of cerebral arteries after subarachnoid hemorrhage in rats after phosphoramidon administered. Jośko J; Hendryk S; Jedrzejowska-Szypułka H; Słowiński J; Gwóźdź B; Lange D; Harabin-Słowińska M Med Sci Monit; 2000; 6(5):976-80. PubMed ID: 11208441 [TBL] [Abstract][Full Text] [Related]
15. Effects of thrombin inhibitor on thrombin-related signal transduction and cerebral vasospasm in the rabbit subarachnoid hemorrhage model. Tsurutani H; Ohkuma H; Suzuki S Stroke; 2003 Jun; 34(6):1497-500. PubMed ID: 12764230 [TBL] [Abstract][Full Text] [Related]
16. Participation of vasopressin in the development of cerebral vasospasm in a rat model of subarachnoid haemorrhage. Trandafir CC; Nishihashi T; Wang A; Murakami S; Ji X; Kurahashi K Clin Exp Pharmacol Physiol; 2004 Apr; 31(4):261-6. PubMed ID: 15053824 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage. Yamaguchi-Okada M; Nishizawa S; Koide M; Nonaka Y J Appl Physiol (1985); 2005 Nov; 99(5):2045-52. PubMed ID: 16051708 [TBL] [Abstract][Full Text] [Related]
18. Role of oxidized LDL and lectin-like oxidized LDL receptor-1 in cerebral vasospasm after subarachnoid hemorrhage. Matsuda N; Ohkuma H; Naraoka M; Munakata A; Shimamura N; Asano K J Neurosurg; 2014 Sep; 121(3):621-30. PubMed ID: 24949677 [TBL] [Abstract][Full Text] [Related]
19. Effective improvement of the cerebral vasospasm after subarachnoid hemorrhage with low-dose nitroglycerin. Ito Y; Isotani E; Mizuno Y; Azuma H; Hirakawa K J Cardiovasc Pharmacol; 2000 Jan; 35(1):45-50. PubMed ID: 10630732 [TBL] [Abstract][Full Text] [Related]
20. Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. Zhou C; Yamaguchi M; Colohan AR; Zhang JH J Cereb Blood Flow Metab; 2005 May; 25(5):572-82. PubMed ID: 15729295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]