These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 32189720)
1. Characterization of renewable diesel particulate matter gathered from non-premixed and partially premixed flame burners and from a diesel engine. Cadrazco M; SantamarĂa A; Jaramillo IC; Kaur K; Kelly KE; Agudelo JR Combust Flame; 2020 Apr; 214():65-79. PubMed ID: 32189720 [TBL] [Abstract][Full Text] [Related]
2. Properties and oxidation of exhaust particulates from dual fuel combustion: A comparative study of premixed gasoline, n-butanol and their blends. Wang X; Wang Y; Bai Y; Duan Q Environ Pollut; 2021 Feb; 271():116391. PubMed ID: 33385888 [TBL] [Abstract][Full Text] [Related]
3. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber. Omidvarborna H; Kumar A; Kim DS Sci Total Environ; 2016 Feb; 544():450-9. PubMed ID: 26657390 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of methods for characterizing the fine particulate matter emissions from aircraft and other diffusion flame combustion aerosol sources. Giannelli R; Stevens J; Kinsey JS; Kittelson D; Zelenyuk A; Howard R; Forde M; Hoffman B; Leggett C; Maeroff B; Bies N; Swanson J; Suski K; Payne G; Manin J; Frazee R; Onasch TB; Freedman A; Khalek I; Badshah H; Preece D; Premnath V; Agnew S J Aerosol Sci; 2024 May; 178():1-20. PubMed ID: 38751612 [TBL] [Abstract][Full Text] [Related]
5. Effects of biodiesels on the physicochemical properties and oxidative reactivity of diesel particulates: A review. Wei J; Wang Y Sci Total Environ; 2021 Sep; 788():147753. PubMed ID: 34020091 [TBL] [Abstract][Full Text] [Related]
6. Investigation of particulate matter by FTIR, TEM and elemental analyses in a diesel engine operating on diesel and waste cooking oil-biodiesel. Ulusoy Y Environ Sci Pollut Res Int; 2020 Jan; 27(1):500-509. PubMed ID: 31797267 [TBL] [Abstract][Full Text] [Related]
7. Influence of diesel engine combustion parameters on primary soot particle diameter. Mathis U; Mohr M; Kaegi R; Bertola A; Boulouchos K Environ Sci Technol; 2005 Mar; 39(6):1887-92. PubMed ID: 15819252 [TBL] [Abstract][Full Text] [Related]
8. Effect of operating conditions on the chemical composition, morphology, and nano-structure of particulate emissions in a light hydrocarbon premixed charge compression ignition (PCCI) engine. Chen H; Wang X; Pan Z Sci Total Environ; 2021 Jan; 750():141716. PubMed ID: 32882499 [TBL] [Abstract][Full Text] [Related]
9. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends. Zhu L; Zhang W; Liu W; Huang Z Sci Total Environ; 2010 Feb; 408(5):1050-8. PubMed ID: 19913283 [TBL] [Abstract][Full Text] [Related]
10. Effect of lubricating base oil on the oxidation behavior of diesel exhaust soot. Wang Y; Yang H; Liang X; Song H; Tao Z Sci Total Environ; 2023 Feb; 858(Pt 3):160009. PubMed ID: 36368398 [TBL] [Abstract][Full Text] [Related]
11. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine. Maurya RK; Saxena MR; Rai P; Bhardwaj A Environ Sci Pollut Res Int; 2018 May; 25(15):14674-14689. PubMed ID: 29532381 [TBL] [Abstract][Full Text] [Related]
12. Impact of carbon chain length of alcohols on the physicochemical properties and reactivity of exhaust soot. Pan M; Wang Y; Wei J; Huang H; Zhou X Sci Total Environ; 2021 Dec; 799():149434. PubMed ID: 34371412 [TBL] [Abstract][Full Text] [Related]
13. Understanding the difference in oxidative properties between flame and diesel soot nanoparticles: the role of metals. Kim SH; Fletcher RA; Zachariah MR Environ Sci Technol; 2005 Jun; 39(11):4021-6. PubMed ID: 15984778 [TBL] [Abstract][Full Text] [Related]
14. Influence of fuel injection timing and pressure on in-flame soot particles in an automotive-size diesel engine. Zhang R; Kook S Environ Sci Technol; 2014 Jul; 48(14):8243-50. PubMed ID: 24933154 [TBL] [Abstract][Full Text] [Related]
15. Effect of metallic lubricant additives on morphology, nanostructure, graphitization degree and oxidation reactivity of diesel particles. Wang Y; Yang H; Liang X; Song H; Tao Z Chemosphere; 2022 Nov; 306():135588. PubMed ID: 35803373 [TBL] [Abstract][Full Text] [Related]
16. Impact of lower and higher alcohol additions to diesel on the combustion and emissions of a direct-injection diesel engine. Li X; Guan C; Yang K; Cheung CS; Huang Z Environ Sci Pollut Res Int; 2019 Jul; 26(20):21001-21012. PubMed ID: 31115816 [TBL] [Abstract][Full Text] [Related]
17. Carbon Nanostructure of Diesel Soot Particles Emitted from 2 and 4 Stroke Marine Engines Burning Different Fuels. Lee WJ; Park SH; Jang SH; Kim H; Choi SK; Cho KH; Cho IS; Lee SM; Choi JH J Nanosci Nanotechnol; 2018 Mar; 18(3):2128-2131. PubMed ID: 29448728 [TBL] [Abstract][Full Text] [Related]
18. Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends. Lamani VT; Yadav AK; Gottekere KN Environ Sci Pollut Res Int; 2017 Oct; 24(29):23351-23362. PubMed ID: 28840441 [TBL] [Abstract][Full Text] [Related]
19. The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine. Cheng Y; Li SM; Liggio J; Hayden K; Han Y; Stroud C; Chan T; Poitras MJ Environ Pollut; 2017 Nov; 230():72-80. PubMed ID: 28649043 [TBL] [Abstract][Full Text] [Related]
20. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: comparative evaluation of biodiesel-diesel and butanol-diesel blends. Zhang ZH; Balasubramanian R J Hazard Mater; 2014 Jan; 264():395-402. PubMed ID: 24316811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]