BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32190011)

  • 1. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils.
    Aaltonen N; Singha PK; Jakupović H; Wirth T; Samaranayake H; Pasonen-Seppänen S; Rilla K; Varjosalo M; Edgington-Mitchell LE; Kasperkiewicz P; Drag M; Kälvälä S; Moisio E; Savinainen JR; Laitinen JT
    Biol Proced Online; 2020; 22():6. PubMed ID: 32190011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-based Protein Profiling of Serine Hydrolase Superfamily Enzymes.
    Dolui AK; Latha M; Vijayaraj P
    Bio Protoc; 2022 Mar; 12(6):e4356. PubMed ID: 35434188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Multiplexed Activity-Based Protein Profiling Assay to Evaluate Activity of Endocannabinoid Hydrolase Inhibitors.
    Janssen APA; van der Vliet D; Bakker AT; Jiang M; Grimm SH; Campiani G; Butini S; van der Stelt M
    ACS Chem Biol; 2018 Sep; 13(9):2406-2413. PubMed ID: 30199617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved synthesis of a fluorophosphonate-polyethylene glycol-biotin probe and its use against competitive substrates.
    Xu H; Sabit H; Amidon GL; Showalter HDH
    Beilstein J Org Chem; 2013; 9():89-96. PubMed ID: 23400700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simplified and Ultrafast Pipeline for Site-Specific Quantitative Chemical Proteomics.
    Xiao W; Chen Y; Zhang J; Guo Z; Hu Y; Yang F; Wang C
    J Proteome Res; 2023 Oct; 22(10):3360-3367. PubMed ID: 37676756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling serine hydrolase activities in complex proteomes.
    Kidd D; Liu Y; Cravatt BF
    Biochemistry; 2001 Apr; 40(13):4005-15. PubMed ID: 11300781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive ABPP of Serine Hydrolases: A Case Study on DAGL-Alpha.
    Baggelaar MP; Van der Stelt M
    Methods Mol Biol; 2017; 1491():161-169. PubMed ID: 27778288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic characterization of serine hydrolase activity and composition in normal urine.
    Navarrete M; Ho J; Krokhin O; Ezzati P; Rigatto C; Reslerova M; Rush DN; Nickerson P; Wilkins JA
    Clin Proteomics; 2013 Nov; 10(1):17. PubMed ID: 24237849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of activity-based protein profiling to study enzyme function in adipocytes.
    Galmozzi A; Dominguez E; Cravatt BF; Saez E
    Methods Enzymol; 2014; 538():151-69. PubMed ID: 24529438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endocannabinoid hydrolases in avian HD11 macrophages identified by chemoproteomics: inactivation by small-molecule inhibitors and pathogen-induced downregulation of their activity.
    Lee JH; Hou X; Kummari E; Borazjani A; Edelmann MJ; Ross MK
    Mol Cell Biochem; 2018 Jul; 444(1-2):125-141. PubMed ID: 29196970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of
    Porta EOJ; Isern JA; Kalesh K; Steel PG
    Front Pharmacol; 2022; 13():929493. PubMed ID: 35910377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microarray platform for profiling enzyme activities in complex proteomes.
    Sieber SA; Mondala TS; Head SR; Cravatt BF
    J Am Chem Soc; 2004 Dec; 126(48):15640-1. PubMed ID: 15571375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DIGE-ABPP by click chemistry: pairwise comparison of serine hydrolase activities from the apoplast of infected plants.
    Hong TN; van der Hoorn RA
    Methods Mol Biol; 2014; 1127():183-94. PubMed ID: 24643562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)--a general method for mapping sites of probe modification in proteomes.
    Weerapana E; Speers AE; Cravatt BF
    Nat Protoc; 2007; 2(6):1414-25. PubMed ID: 17545978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening.
    Bachovchin DA; Ji T; Li W; Simon GM; Blankman JL; Adibekian A; Hoover H; Niessen S; Cravatt BF
    Proc Natl Acad Sci U S A; 2010 Dec; 107(49):20941-6. PubMed ID: 21084632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity- and reactivity-based proteomics: Recent technological advances and applications in drug discovery.
    Benns HJ; Wincott CJ; Tate EW; Child MA
    Curr Opin Chem Biol; 2021 Feb; 60():20-29. PubMed ID: 32768892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-based protein profiling of rice (Oryza sativa L.) bran serine hydrolases.
    Dolui AK; Vijayakumar AK; Rajasekharan R; Vijayaraj P
    Sci Rep; 2020 Sep; 10(1):15191. PubMed ID: 32938958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity based protein profiling to detect serine hydrolase alterations in virus infected cells.
    Shahiduzzaman M; Coombs KM
    Front Microbiol; 2012; 3():308. PubMed ID: 23024641
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.