These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 32190114)
21. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Ventorino V; Aliberti A; Faraco V; Robertiello A; Giacobbe S; Ercolini D; Amore A; Fagnano M; Pepe O Sci Rep; 2015 Feb; 5():8161. PubMed ID: 25641069 [TBL] [Abstract][Full Text] [Related]
22. A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Gharechahi J; Salekdeh GH Biotechnol Biofuels; 2018; 11():216. PubMed ID: 30083229 [TBL] [Abstract][Full Text] [Related]
23. Characterization of Novel Pectinolytic Enzymes Derived from the Efficient Lignocellulose Degradation Microbiota. Miao Q; Zhang X; Wang Y; Li X; Wang Z; Tian L; Qu L; Wei Y Biomolecules; 2022 Sep; 12(10):. PubMed ID: 36291597 [TBL] [Abstract][Full Text] [Related]
25. Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose-degrading enzymes. Lacerda Júnior GV; Noronha MF; de Sousa ST; Cabral L; Domingos DF; Sáber ML; de Melo IS; Oliveira VM FEMS Microbiol Ecol; 2017 Feb; 93(2):. PubMed ID: 27986827 [TBL] [Abstract][Full Text] [Related]
26. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. Svartström O; Alneberg J; Terrapon N; Lombard V; de Bruijn I; Malmsten J; Dalin AM; El Muller E; Shah P; Wilmes P; Henrissat B; Aspeborg H; Andersson AF ISME J; 2017 Nov; 11(11):2538-2551. PubMed ID: 28731473 [TBL] [Abstract][Full Text] [Related]
27. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. Wilhelm RC; Singh R; Eltis LD; Mohn WW ISME J; 2019 Feb; 13(2):413-429. PubMed ID: 30258172 [TBL] [Abstract][Full Text] [Related]
28. Acidobacteria members harbour an abundant and diverse carbohydrate-active enzymes (cazyme) and secreted proteasome repertoire, key factors for potential efficient biomass degradation. Coluccia M; Besaury L Mol Genet Genomics; 2023 Sep; 298(5):1135-1154. PubMed ID: 37335345 [TBL] [Abstract][Full Text] [Related]
29. Discovery of novel carbohydrate degrading enzymes from soda lakes through functional metagenomics. Jeilu O; Simachew A; Alexandersson E; Johansson E; Gessesse A Front Microbiol; 2022; 13():1059061. PubMed ID: 36569080 [TBL] [Abstract][Full Text] [Related]
30. De novo transcriptome analysis of Pleurotus djamor to identify genes encoding CAZymes related to the decomposition of corn stalk lignocellulose. Li Y; Liu J; Wang G; Yang M; Yang X; Li T; Chen G J Biosci Bioeng; 2019 Nov; 128(5):529-536. PubMed ID: 31147217 [TBL] [Abstract][Full Text] [Related]
31. Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island. Oh HN; Lee TK; Park JW; No JH; Kim D; Sul WJ J Microbiol Biotechnol; 2017 Sep; 27(9):1670-1680. PubMed ID: 28633514 [TBL] [Abstract][Full Text] [Related]
32. Comparative Metagenomics of Cellulose- and Poplar Hydrolysate-Degrading Microcosms from Gut Microflora of the Canadian Beaver ( Wong MT; Wang W; Couturier M; Razeq FM; Lombard V; Lapebie P; Edwards EA; Terrapon N; Henrissat B; Master ER Front Microbiol; 2017; 8():2504. PubMed ID: 29326667 [TBL] [Abstract][Full Text] [Related]
33. Dynamics of Abundant and Rare Bacteria During Degradation of Lignocellulose from Sugarcane Biomass. Puentes-Téllez PE; Salles JF Microb Ecol; 2020 Feb; 79(2):312-325. PubMed ID: 31286170 [TBL] [Abstract][Full Text] [Related]
34. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Ni J; Tokuda G Biotechnol Adv; 2013 Nov; 31(6):838-50. PubMed ID: 23623853 [TBL] [Abstract][Full Text] [Related]
35. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Mhuantong W; Charoensawan V; Kanokratana P; Tangphatsornruang S; Champreda V Biotechnol Biofuels; 2015; 8():16. PubMed ID: 25709713 [TBL] [Abstract][Full Text] [Related]
36. Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Zimmer M Biol Rev Camb Philos Soc; 2002 Nov; 77(4):455-93. PubMed ID: 12475050 [TBL] [Abstract][Full Text] [Related]
37. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. Oh HN; Park D; Seong HJ; Kim D; Sul WJ J Microbiol; 2019 Oct; 57(10):865-873. PubMed ID: 31571125 [TBL] [Abstract][Full Text] [Related]
38. Effects of Dysbiosis and Dietary Manipulation on the Digestive Microbiota of a Detritivorous Arthropod. Bredon M; Depuydt E; Brisson L; Moulin L; Charles C; Haenn S; Moumen B; Bouchon D Microorganisms; 2021 Jan; 9(1):. PubMed ID: 33440837 [TBL] [Abstract][Full Text] [Related]
39. Widespread atypical mitochondrial DNA structure in isopods (Crustacea, Peracarida) related to a constitutive heteroplasmy in terrestrial species. Doublet V; Raimond R; Grandjean F; Lafitte A; Souty-Grosset C; Marcadé I Genome; 2012 Mar; 55(3):234-44. PubMed ID: 22376074 [TBL] [Abstract][Full Text] [Related]
40. Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics. Thornbury M; Sicheri J; Slaine P; Getz LJ; Finlayson-Trick E; Cook J; Guinard C; Boudreau N; Jakeman D; Rohde J; McCormick C PLoS One; 2019; 14(1):e0209221. PubMed ID: 30601862 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]