BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 32190665)

  • 21. The role of osteocytes in targeted bone remodeling: a mathematical model.
    Graham JM; Ayati BP; Holstein SA; Martin JA
    PLoS One; 2013; 8(5):e63884. PubMed ID: 23717504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osteoclasts and Remodeling Based Bone Formation.
    Kylmaoja E; Nakamura M; Tuukkanen J
    Curr Stem Cell Res Ther; 2016; 11(8):626-633. PubMed ID: 26477623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling factors and exosomal packaging microRNAs involved in the regulation of bone remodelling.
    Zhu S; Yao F; Qiu H; Zhang G; Xu H; Xu J
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):469-480. PubMed ID: 28795526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling.
    Komarova SV; Smith RJ; Dixon SJ; Sims SM; Wahl LM
    Bone; 2003 Aug; 33(2):206-15. PubMed ID: 14499354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanisms in coupling of bone formation to resorption.
    Martin T; Gooi JH; Sims NA
    Crit Rev Eukaryot Gene Expr; 2009; 19(1):73-88. PubMed ID: 19191758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are nonresorbing osteoclasts sources of bone anabolic activity?
    Karsdal MA; Martin TJ; Bollerslev J; Christiansen C; Henriksen K
    J Bone Miner Res; 2007 Apr; 22(4):487-94. PubMed ID: 17227224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part I of IV parts: mechanisms of calcium transfer between blood and bone and their cellular basis: morphological and kinetic approaches to bone turnover.
    Parfitt AM
    Metabolism; 1976 Jul; 25(7):809-44. PubMed ID: 781470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Regulation of bone resorption by osteocytes].
    Nakashima T; Hayash M; Takayanagi H
    Clin Calcium; 2012 May; 22(5):685-96. PubMed ID: 22549193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biology of the basic multicellular unit and the pathophysiology of osteoporosis.
    Jilka RL
    Med Pediatr Oncol; 2003 Sep; 41(3):182-5. PubMed ID: 12868116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pathogenesis of Osteoporosis.
    Al Saedi A; Stupka N; Duque G
    Handb Exp Pharmacol; 2020; 262():353-367. PubMed ID: 32297003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel insights into the coupling of osteoclasts and resorption to bone formation.
    Durdan MM; Azaria RD; Weivoda MM
    Semin Cell Dev Biol; 2022 Mar; 123():4-13. PubMed ID: 34756783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system.
    Niedźwiedzki T; Filipowska J
    J Mol Endocrinol; 2015 Oct; 55(2):R23-36. PubMed ID: 26307562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis.
    Cai X; Xing J; Long CL; Peng Q; Humphrey MB
    J Bone Miner Res; 2017 Nov; 32(11):2207-2218. PubMed ID: 28650106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteoblasts: novel roles in orchestration of skeletal architecture.
    Mackie EJ
    Int J Biochem Cell Biol; 2003 Sep; 35(9):1301-5. PubMed ID: 12798343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The pathophysiology of immunoporosis: innovative therapeutic targets.
    Ferbebouh M; Vallières F; Benderdour M; Fernandes J
    Inflamm Res; 2021 Aug; 70(8):859-875. PubMed ID: 34272579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is There a Governing Role of Osteocytes in Bone Tissue Regeneration?
    Cao W; Helder MN; Bravenboer N; Wu G; Jin J; Ten Bruggenkate CM; Klein-Nulend J; Schulten EAJM
    Curr Osteoporos Rep; 2020 Oct; 18(5):541-550. PubMed ID: 32676786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Osteoblast-osteoclast interaction mechanisms].
    Riancho JA; Delgado-Calle J
    Reumatol Clin; 2011 Sep; 7 Suppl 2():S1-4. PubMed ID: 21924211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crosstalk of osteoblast and osteoclast precursors on mineralized collagen--towards an in vitro model for bone remodeling.
    Bernhardt A; Thieme S; Domaschke H; Springer A; Rösen-Wolff A; Gelinsky M
    J Biomed Mater Res A; 2010 Dec; 95(3):848-56. PubMed ID: 20824694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic and transcriptional control of bone formation.
    Javed A; Chen H; Ghori FY
    Oral Maxillofac Surg Clin North Am; 2010 Aug; 22(3):283-93, v. PubMed ID: 20713262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Osteoclast function is regulated by neighbouring osteoblasts. Osteoprotegerin, RAND and RANK ligand constitute a unique regulatory system for bone resorption with important pathophysiological and therapeutic aspects].
    Ueland T; Bollerslev J; Mosekilde L
    Ugeskr Laeger; 2002 Jul; 164(27):3526-30. PubMed ID: 12116680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.