BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 32190665)

  • 41. Function of matrix IGF-1 in coupling bone resorption and formation.
    Crane JL; Cao X
    J Mol Med (Berl); 2014 Feb; 92(2):107-15. PubMed ID: 24068256
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cross-talk among bone cells.
    Matsuo K
    Curr Opin Nephrol Hypertens; 2009 Jul; 18(4):292-7. PubMed ID: 19395964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Disordered osteoclast formation and function in a CD38 (ADP-ribosyl cyclase)-deficient mouse establishes an essential role for CD38 in bone resorption.
    Sun L; Iqbal J; Dolgilevich S; Yuen T; Wu XB; Moonga BS; Adebanjo OA; Bevis PJ; Lund F; Huang CL; Blair HC; Abe E; Zaidi M
    FASEB J; 2003 Mar; 17(3):369-75. PubMed ID: 12631576
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Current perspectives on the multiple roles of osteoclasts: Mechanisms of osteoclast-osteoblast communication and potential clinical implications.
    Daponte V; Henke K; Drissi H
    Elife; 2024 Apr; 13():. PubMed ID: 38591777
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Drug Treatment and In Vivo Imaging of Osteoblast-Osteoclast Interactions in a Medaka Fish Osteoporosis Model.
    Yu T; Winkler C
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117826
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Osteoclast-derived activity in the coupling of bone formation to resorption.
    Martin TJ; Sims NA
    Trends Mol Med; 2005 Feb; 11(2):76-81. PubMed ID: 15694870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identifying genes that regulate bone remodeling as potential therapeutic targets.
    Krane SM
    J Exp Med; 2005 Mar; 201(6):841-3. PubMed ID: 15781576
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Osteoclast and its roles in calcium metabolism and bone development and remodeling.
    Li Z; Kong K; Qi W
    Biochem Biophys Res Commun; 2006 May; 343(2):345-50. PubMed ID: 16554033
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Liver X receptors orchestrate osteoblast/osteoclast crosstalk and counteract pathologic bone loss.
    Kleyer A; Scholtysek C; Bottesch E; Hillienhof U; Beyer C; Distler JH; Tuckermann JP; Schett G; Krönke G
    J Bone Miner Res; 2012 Dec; 27(12):2442-51. PubMed ID: 22806960
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Osteoclast culture and resorption assays.
    Bradley EW; Oursler MJ
    Methods Mol Biol; 2008; 455():19-35. PubMed ID: 18463808
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Osteoclastic bone resorption: normal and pathological.
    Schepetkin I
    Ann N Y Acad Sci; 1997 Dec; 832():170-93. PubMed ID: 9704046
    [No Abstract]   [Full Text] [Related]  

  • 52. The osteoclast, bone remodelling and treatment of metabolic bone disease.
    Boyce BF; Rosenberg E; de Papp AE; Duong LT
    Eur J Clin Invest; 2012 Dec; 42(12):1332-41. PubMed ID: 22998735
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone.
    Parfitt AM
    J Cell Biochem; 1994 Jul; 55(3):273-86. PubMed ID: 7962158
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An adult osteopetrosis model in medaka reveals the importance of osteoclast function for bone remodeling in teleost fish.
    To TT; Witten PE; Huysseune A; Winkler C
    Comp Biochem Physiol C Toxicol Pharmacol; 2015 Dec; 178():68-75. PubMed ID: 26334373
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis.
    Wada T; Nakashima T; Oliveira-dos-Santos AJ; Gasser J; Hara H; Schett G; Penninger JM
    Nat Med; 2005 Apr; 11(4):394-9. PubMed ID: 15750601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Osteoclast-derived coupling factors in bone remodeling.
    Henriksen K; Karsdal MA; Martin TJ
    Calcif Tissue Int; 2014 Jan; 94(1):88-97. PubMed ID: 23700149
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arecoline suppresses RANKL-induced osteoclast differentiation in vitro and attenuates LPS-induced bone loss in vivo.
    Liu FL; Chen CL; Lai CC; Lee CC; Chang DM
    Phytomedicine; 2020 Apr; 69():153195. PubMed ID: 32200293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand.
    Udagawa N; Takahashi N; Jimi E; Matsuzaki K; Tsurukai T; Itoh K; Nakagawa N; Yasuda H; Goto M; Tsuda E; Higashio K; Gillespie MT; Martin TJ; Suda T
    Bone; 1999 Nov; 25(5):517-23. PubMed ID: 10574571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phenomenological model of bone remodeling cycle containing osteocyte regulation loop.
    Moroz A; Crane MC; Smith G; Wimpenny DI
    Biosystems; 2006 Jun; 84(3):183-90. PubMed ID: 16387419
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellular and Molecular Aspects of Bone Remodeling.
    Xiao W; Wang Y; Pacios S; Li S; Graves DT
    Front Oral Biol; 2016; 18():9-16. PubMed ID: 26599113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.