These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32190827)

  • 1. Optimization of Chronic Cardiac Resynchronization Therapy Using Fusion Pacing Algorithm Improves Echocardiographic Response.
    AlTurki A; Lima PY; Bernier ML; Garcia D; Vidal A; Toscani B; Diaz S; Montemezzo M; Al-Dossari A; Hadjis T; Joza J; Essebag V
    CJC Open; 2020 Mar; 2(2):62-70. PubMed ID: 32190827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac resynchronization therapy reprogramming to improve electrical synchrony in patients with existing devices.
    AlTurki A; Lima PY; Garcia D; Montemezzo M; Al-Dosari A; Vidal A; Toscani B; Diaz S; Bernier M; Hadjis T; Joza J; Essebag V
    J Electrocardiol; 2019; 56():94-99. PubMed ID: 31349133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of electrical synchrony in cardiac resynchronization therapy using dynamic atrioventricular delay programming and multipoint pacing.
    Schiedat F; Mijic D; Karosiene Z; Bogossian H; Zarse M; Lemke B; Hanefeld C; Mügge A; Kloppe A
    Pacing Clin Electrophysiol; 2021 Dec; 44(12):1963-1971. PubMed ID: 34586643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion pacing in patients with right bundle branch block who undergo cardiac resynchronization therapy.
    AlTurki A; Lima PY; Vidal A; Toscani B; Diaz S; Garcia D; Montemezzo M; Al-Dossari A; Bernier ML; Hadjis T; Joza J; Essebag V
    J Electrocardiol; 2021; 64():66-71. PubMed ID: 33348136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of LV Reverse Remodeling Using Dynamic Programming of Fusion-Optimized Atrioventricular Intervals in Cardiac Resynchronization Therapy.
    Wang Z; Li P; Zhang B; Huang J; Chen S; Cai Z; Qin Y; Fan J; Tang W; Qin Y; Li R; Zhao X
    Front Cardiovasc Med; 2021; 8():700424. PubMed ID: 34490369
    [No Abstract]   [Full Text] [Related]  

  • 6. Dynamic programming of atrioventricular delay improves electrical synchrony in a multicenter cardiac resynchronization therapy study.
    Thibault B; Ritter P; Bode K; Calò L; Mondésert B; Mangual JO; Badie N; McSpadden LC; Pappone C; Varma N
    Heart Rhythm; 2019 Jul; 16(7):1047-1056. PubMed ID: 30682433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of synchronous atrioventricular delay optimization on left ventricle flow force angle evaluated by echocardiographic particle image velocimetry.
    Bianchi V; Martiniello AR; Mangual J; Tavoletta V; Pedrizzetti G; Tonti G; Caso VM; Caso P; D'Onofrio A
    J Interv Card Electrophysiol; 2022 Jan; 63(1):1-8. PubMed ID: 33474704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical synchronization achieved by multipoint pacing combined with dynamic atrioventricular delay.
    O'Donnell D; Wisnoskey B; Badie N; Odgers L; Smart T; Ord M; Lin T; Mangual JO; Cranke G; McSpadden LC; Ryu K; Bianchi V; D'Onofrio A; Pappone C; Calò L; Chow A; Betts TR; Thibault B; Varma N
    J Interv Card Electrophysiol; 2021 Sep; 61(3):453-460. PubMed ID: 32740689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient-tailored SyncAV algorithm: A novel strategy to improve synchrony and acute hemodynamic response in heart failure patients treated by cardiac resynchronization therapy.
    Wang J; Liang Y; Chen H; Wang W; Bai J; Chen X; Qin S; Su Y; Ge J
    J Cardiovasc Electrophysiol; 2020 Feb; 31(2):512-520. PubMed ID: 31828904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic atrioventricular delay programming improves ventricular electrical synchronization as evaluated by 3D vectorcardiography.
    Engels EB; Thibault B; Mangual J; Badie N; McSpadden LC; Calò L; Ritter P; Pappone C; Bode K; Varma N; Prinzen FW
    J Electrocardiol; 2020; 58():1-6. PubMed ID: 31677533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Left ventricular-only fusion pacing versus cardiac resynchronization therapy in heart failure patients: A randomized controlled trial.
    Su Y; Hua W; Shen F; Zou J; Tang B; Chen K; Liang Y; He L; Zhou X; Zhang X; Lu H; Zhang S
    Clin Cardiol; 2021 Sep; 44(9):1225-1232. PubMed ID: 34342026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive hemodynamic determination of patient-specific optimal pacing mode in cardiac resynchronization therapy.
    Ferchaud V; Garcia R; Bidegain N; Degand B; Milliez P; Pezel T; Moubarak G
    J Interv Card Electrophysiol; 2021 Nov; 62(2):347-356. PubMed ID: 33128179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of the SyncAV
    Spitaler P; Pfeifer BE; Mayr A; Bachler R; Bilgeri V; Adukauskaite A; Bauer A; Stühlinger M; Barbieri F; Dichtl W
    J Clin Med; 2023 Jul; 12(13):. PubMed ID: 37445543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gain in real-world cardiac resynchronization therapy efficacy with SyncAV dynamic optimization: Heart failure hospitalizations and costs.
    Varma N; Hu Y; Connolly AT; Thibault B; Singh B; Mont L; Nabutovsky Y; Zareba W
    Heart Rhythm; 2021 Sep; 18(9):1577-1585. PubMed ID: 33965608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term reverse remodeling by cardiac resynchronization therapy with MultiPoint Pacing: A feasibility study of noninvasive hemodynamics-guided device programming.
    Lercher P; Lunati M; Rordorf R; Landolina M; Badie N; Qu F; Casset C; Ryu K; Ghio S; Singh JP; Leclercq C
    Heart Rhythm; 2018 Dec; 15(12):1766-1774. PubMed ID: 29940305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atrioventricular delay programming and the benefit of cardiac resynchronization therapy in MADIT-CRT.
    Brenyo A; Kutyifa V; Moss AJ; Mathias A; Barsheshet A; Pouleur AC; Knappe D; McNitt S; Polonsky B; Huang DT; Solomon SD; Zareba W; Goldenberg I
    Heart Rhythm; 2013 Aug; 10(8):1136-43. PubMed ID: 23712031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Application and efficacy of the adjustment on left ventricular electrical delay and the distance between right and left ventricular pacing polar in optimizing the left ventricular pacing polar].
    Yan XL; Liang YC; Yu HB; Xu BG; Gao Y; Liu R; Xu GQ; Wu M
    Zhonghua Xin Xue Guan Bing Za Zhi; 2020 Aug; 48(8):669-674. PubMed ID: 32847323
    [No Abstract]   [Full Text] [Related]  

  • 18. Multipoint left ventricular pacing improves response to cardiac resynchronization therapy with and without pressure-volume loop optimization: comparison of the long-term efficacy of two different programming strategies.
    Ciconte G; Ćalović Ž; McSpadden LC; Ryu K; Mangual J; Caporaso I; Baldi M; Saviano M; Cuko A; Vitale R; Conti M; Giannelli L; Vicedomini G; Santinelli V; Pappone C
    J Interv Card Electrophysiol; 2019 Mar; 54(2):141-149. PubMed ID: 30483980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multipoint left ventricular pacing with large anatomical separation improves reverse remodeling and response to cardiac resynchronization therapy in responders and non-responders to conventional biventricular pacing.
    Schiedat F; Schöne D; Aweimer A; Bösche L; Ewers A; Gotzmann M; Patsalis PC; Mügge A; Kloppe A
    Clin Res Cardiol; 2020 Feb; 109(2):183-193. PubMed ID: 31152199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biventricular pacing with ventricular fusion by intrinsic activation in cardiac resynchronization therapy.
    Guo T; Li R; Zhang L; Luo Z; Zhao L; Yang J; Pu L; Hua B
    Int Heart J; 2015 May; 56(3):293-7. PubMed ID: 25912899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.